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1 Introduction

The motivation for this thesis is twofold. First of all the dynamic interrela-

tions between two closely related asymmetric economic areas are of interest,

since it is often the case that the economic performance of a small country

is determined by a large neighbor. The transmission channels which ensure

such an interrelation should be identified in this thesis. The countries inves-

tigated are Austria and Germany as they are highly integrated, but neverthe-

less represent distinct nations. They are both member states of the European

Union, they share a common currency and a common language. There are a

lot of important sectors where developments in Germany influence the per-

formance of the Austrian economy. Important examples include: The bulk

of Austrian exports goes to Germany (see Statistik Austria (2006)), many

Germans spend their vacations in Austria, and lots of German workers sup-

ply their skills on the Austrian labor market and vice versa. The latter effect

has become more and more important during recent years, when the German

economy has suffered from a high unemployment rate (see for example Biffl

(2006)). Similar models could prove useful in analyzing interactions between

Canada and the United States, between Mexico and the United States, or

between Portugal and Spain, to mention only a few examples. Some regional

adaptations would be needed because Canada and the United States share

a common language but no common currency, the converse holds true for

Portugal and Spain, while Mexico shares neither a common language nor a

common currency with the United States.

Secondly, as the resulting framework contains most of the relevant infor-

mation for predicting the economic performance of the small country, it could

be a useful forecasting tool. Since the model only involves two economies,

difficulties with respect to data collection and aggregation of different time

series are small. Consequently, it should produce reliable forecasts that in-

volve as much information and as few distortions as possible. Therefore we

expect that our model can complement existing forecasting procedures for

the Austrian economy.

The first challenge is to find an accurate modeling framework. Various
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approaches are described in the literature of macroeconometric modeling:

Large-scale models with a huge number of behavioral equations that are used

most frequently in policy simulation but are subject to some serious criticism

described later on; Dynamic Stochastic General Equilibrium (DSGE) Models,

which recently became popular but are more suited for analyzing transmis-

sion channels of monetary policy shocks; Vector Autoregressive (VAR) mod-

els, which are purely statistically motivated, and consequently are immune

against theoretical critiques; and Structural Vector Autoregressive (SVAR)

models, which combine elements of short-run economic theory in the form

of restrictions on the contemporaneous coefficients with purely statistically

motivated VARs. However, there is a lack of consensus among economists

on the validity of short-run economic theory and therefore Structural Vector

Error Correction models (SVECMs) which have become a widely used tool

in macroeconometric modeling in the recent years (see for example Vlaar

and Schuberth (1999), Baltensperger et al. (2001), Garratt et al. (2003),

Vlaar (2004), Garratt et al. (2006), Gaggl et al. (2008)) seem to be the most

promising model class regarding our research questions. The main advantage

of this class of models lies in the possible combination of two features. On

the one hand, the long-run behavior of the economy is described with the

help of theoretically motivated steady state conditions. On the other hand,

the short-run behavior is analyzed statistically without guidance from eco-

nomic theory. In contrast to SVAR models (see for example Blanchard and

Quah (1989), Christiano et al. (1999)), which use short-run economic the-

ory to derive identifying restrictions, SVECMs therefore do not necessarily

need these restrictions. This is a clear advantage because of the lack of a

consensus among economists regarding the validity of theoretical short-run

relationships. Moreover, if one has to investigate data with a high frequency,

for example monthly series, economic theory is unable to provide short-run

restrictions on the contemporaneous dependency between variables.

Basically, Vlaar and Schuberth (1999), Baltensperger et al. (2001) and

Vlaar (2004) concentrate their analyses on transmission channels of mone-

tary shocks. These channels are identified with the help of impulse response

functions. While Vlaar and Schuberth (1999) and Vlaar (2004) use long-
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run and short-run restrictions, the SVECM of Baltensperger et al. (2001)

uses long-run restrictions, but solely relies on the Choleski decomposition for

identifying short-run shocks.

The other authors mentioned above analyze open economies and inter-

actions between the home and foreign country. Garratt et al. (2006) con-

centrate on the United Kingdom, where the “rest of the world”, in this case

all other OECD countries, represents the foreign economy. In their work

the main task was to develop a model which is able to forecast the most

important time series of the British economy and not so much weight is put

on the interaction with the foreign region. In contrast, Gaggl et al. (2008)

investigate the dynamics between the European Monetary Union and the

United States, currently representing the dominant economic areas among

developed countries. This is done by comparing impulse response functions

of a United States model with the eurozone as foreign economy, with those

of a eurozone model where the United States represent the foreign economy.

As such SVECM analyses proved useful when looking at two closely linked

economic areas, it would be the natural framework to describe the common

development of Austria and Germany as well.

However, there are a number of important methodological differences to

Gaggl et al. (2008). First of all, monetary variables do not play such an

important role in explaining differences between Austria and Germany, as

the Schilling was coupled to the Deutsche Mark over the relevant periods.

Furthermore, since 1998, both countries have been members of the European

Monetary Union and have shared a common currency. Therefore money

aggregates like M0 or M1 do not exist for the individual economies anymore

and also the exchange rate has been fixed since 1998. For these reasons,

attention has shifted from monetary aggregates to the labor market in this

thesis. The advantage of doing so is that possible interrelations with respect

to labor migration can be assessed as well.

Another difference concerns the construction of relevant aggregate vari-

ables in the foreign economy. Gaggl et al. (2008) construct data for the

eurozone from time series of the individual member countries. There are

some difficulties associated with such an approach, for instance the choice
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of accurate weights (see Beyer et al. (2001) for more details), the fact that

measurement errors carry over to the constructed aggregates, and that the

foreign aggregated series are very smooth as compared to the domestic ones,

since shocks are averaged out. In examining the relations between two indi-

vidual countries there is no need to choose accurate weights, measurement

errors are far less important, and shocks are not averaged at all. Therefore

one could expect to work with data of higher quality in this case. Regard-

ing the forecasting performance, this could clearly lead to advantages of the

two country model. Furthermore, at the time when forecasts should be per-

formed, one needs to be less concerned about the availability of data, since

fewer time series are needed.

In section 2, traditional macroeconometric approaches are described. In

particular, the most important historical developments, methodological cri-

tiques, and reactions of model builders to circumvent these critiques are

outlined. Section 3 describes the SVECM and possible identification pro-

cedures for the cointegrating vectors as well as for short-run shocks. Fur-

thermore, the estimation procedure and the associated specification tests are

outlined. Section 4 includes the dynamic optimization model of households

which makes it possible to derive three potential long-run restrictions. Two

more potential restrictions can be derived using the steady state properties

of neoclassical growth models and characteristics of the interactions between

the two labor markets. Section 5 is dedicated to the description of the un-

derlying time series. Visual inspection as well as unit root tests reveal that

all series fulfill statistical properties such that they can be included in the

SVECM. In sections 6 and 7 the model is estimated and has to undergo var-

ious specification tests. These tests indicate that the model performs well in

describing the underlying data series, so it is used to study different shocks

to German variables and their effects on Austrian counterparts. Section 8

investigates the forecasting properties of the SVECM. In addition, the model

is combined with other forecasting procedures, which results in a useful tool

for predicting changes in Austrian inflation, changes in the Austrian inter-

est rate, changes in the Austrian unemployment rate and levels of Austrian

output growth. This tool could be extended in various ways, for example to
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include the predictions of the large-scale models used by the Austrian Central

Bank (OeNB), the Institute for Advanced Studies (IHS), and the Austrian

Institute of Economic Research (WIFO). Additionally, the judgment of ex-

perts and future results of the DSGE model developed in the OeNB could be

part of a combined forecasting procedure. Finally section 9 summarizes the

results, draws various conclusions and highlights scope for further research.
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2 The Main Macroeconometric Approaches

2.1 Large-scale Models

Large-scale models, which typically consist of a huge number of simultaneous

equations, are the workhorses in macroeconometric modeling. Their roots go

back to the work of Tinbergen (1937), which was the first approach to explain

business cycle movements with the help of behavioral equations (see also

B̊ardsen et al. (2005)). Later the probabilistic foundations of econometrics,

introduced by Haavelmo (1944), were explicitly implemented in a model for

the United States economy by Klein (1950). Most research at that time

concentrated on linking economic theory to mathematics in general and to

statistics in particular and was performed by members of the so called Cowles

Commission.

During the 1970s large-scale models lost a lot of their popularity as they

had to face enormous critiques:

• First of all they were not able to forecast the dramatic impacts of the

oil crises in 1973 and 1979 on the economies under consideration

• Secondly, the well known Lucas critique (Lucas (1976)) stated that pol-

icy simulations cannot be performed with the aid of large-scale models,

since estimated parameters of the model itself would change in response

to policy shocks. The reason for this is that the economic environment

changes after an exogenous shock and consequently also agents with ra-

tional expectations would change their behavior to respond optimally

• Thirdly, Sims (1980) argued that the assumed distinction between en-

dogenous and exogenous variables in large-scale models relies on in-

credible restrictions derived from the economic theory of the short-run.

Such identification schemes are seen as quite arbitrary, since there are

lots of doubts on the validity of short-run economic theory

Over the following decades there were a lot of attempts to strengthen

large-scale models against such critiques by implementing rational expecta-
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tions and by trying to formulate microfoundations of the behavioral equa-

tions. In addition, short-run restrictions became less and less relevant since

due to advances in cointegration analysis modeling the long-run became in-

creasingly popular (Engle and Granger (1987); see also Garratt et al. (2006)).

Although some skepticism remained among researchers with respect to the

use of large-scale models in policy analysis, this approach is still the most

widely used in practice.

Examples of large-scale macroeconometric models now in use are the Fair

Model (Fair (1998)) for the United States and the OECD Interlink Model

(see for example Dalsgaard et al. (2001)). In case of Austria the IHS uses

the model LIMA (Hofer and Kunst (2004)), the OeNB uses the model AQM

(Fenz and Spitzer (2004)) and WIFO uses WIFO-Macromod (Baumgartner

et al. (2004)).

2.2 Vector Autoregressive Models

Another way to circumvent the theoretical critiques was proposed by Sims

(1980) and involved the application of unrestricted vector autoregressive

(VAR) models to macroeconomic data. Contrary to large-scale models, VARs

are purely statistically motivated and therefore they do not need to draw on

economic theory to find identifying restrictions. VARs are also robust with

respect to the Lucas critique (Lucas (1976)) because they are used for im-

pulse response analysis, which is not deemed to be policy simulation since

the data generating process does not consist of optimizing individuals whose

underlying behavior could change.

There are nevertheless some points to be criticized: First of all the mod-

els have to stay quite small, both with respect to the lag length and with

respect to the number of endogenous variables included. This is the case

because otherwise the number of parameters to be estimated becomes very

large and typically economic time series do not include enough observations

to estimate them all in a meaningful way. Secondly, VARs require that the

order of integration of all endogenous variables is the same. However, if some

of the included series have to be differenced, one loses relevant information if
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cointegration is not accounted for. The third point is that in performing im-

pulse response analysis one requires an identifying structure on the variance

covariance matrix of the error terms. Sims (1980) used the Choleski decom-

position, which imposes a causal ordering on the endogenous variables and

therefore on the transmission of impulses. The application of a meaningful

ordering would again require the use of economic theory but this is exactly

what Sims wanted to avoid (see also Garratt et al. (2006)).

A solution to the third problem lies in the use of so called “generalized

impulse response functions”, described in section 3.2 (see Pesaran and Shin

(1998), see also Koop et al. (1996)), which are invariant with respect to

different orderings of endogenous variables. The relevant procedure is imple-

mented in the software package used for estimating the model later on (see

Eviews 6 (2007)).

2.3 Structural Vector Autoregressive Models

Most properties of VARs carry over to the SVARs. However, the latter

approach solves the problem regarding the use of orthogonalized impulse

response functions by assuming a structure for the variance-covariance matrix

of the error terms, which again comes from short-run economic theory (see

also Favero (2001)). In addition to the difficulties associated with such an

approach and mentioned in section 1, one would have to deduce a very large

number of restrictions for exact identification if the number of endogenous

variables in the SVAR becomes large. However, economic theory is hardly

able to provide so many restrictions. Examples of SVARs include Bernanke

(1986), Blanchard and Quah (1989) and Christiano et al. (1999).

2.4 Dynamic Stochastic General Equilibrium Models

Dynamic Stochastic General Equilibrium (DSGE) models circumvent the

Lucas critique (Lucas (1976)) by relying on the intertemporal optimization

of agents in an economy. It is assumed that there exists a representative

household which optimally allocates its income to consumption of the vari-

ous goods and investment in various assets. The first order conditions of the
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household’s optimization problem comprise an individual’s optimal responses

to different shocks in the economy. Therefore the approach is completely the-

ory driven in the sense that equilibrium conditions are expressed in terms of

the so-called “deep parameters” of the model (see also Garratt et al. (2006)).

These parameters mainly represent the tastes of agents and are sometimes

seen as the only parameters that could be reasonably estimated, since they

do not change in response to exogenous shocks. These parameters typically

enter the model via specific forms of utility functions. An example for a

“deep parameter” would be the elasticity of substitution between different

goods.

In the beginning, DSGE models were closely linked to the development of

the Real Business Cycle theory. In particular, fluctuations were not consid-

ered as deviations from an equilibrium but as a Pareto optimal adjustment

to exogenous real shocks (Garratt et al. (2006)). Consequently, market fail-

ures did not occur in these models, such that a social planner was unable to

improve welfare and so welfare policies could not be investigated. Another

disadvantage was that in earlier DSGE models nominal rigidities did not

play any role and so monetary policy could not be addressed. In response to

these shortcomings, adjustment costs, information heterogeneities, and also

endogenous technological change were implemented in newer models. Never-

theless it was not until the 1990s that nominal rigidities of prices and wages

were also considered in DSGE models. With the implementation of such fric-

tions, DSGE models became more useful, especially for central banks, and

they perform quite well in forecasting nowadays.

The solution of the system under rational expectations can be approxi-

mated by VAR models in case of closed economies. If open economies are the

object of interest, one would have to generalize the VAR models to account

for exogenous variables too. These models are called VARX models and are

introduced in their vector error correction representation in section 3.

Examples of DSGE-models include the one used by the European Central

Bank (Smets and Wouters (2003)). There are lots of attempts to implement

DSGE models, especially in central banks of countries in the eurozone (see

for example Pytlarczyk (2005)), but currently there is no operable model
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for the Austrian economy. For a basic treatment of this model class see for

example Canova (2007).
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3 The Structural Vector Error Correction

Model

Macroeconometric models typically involve variables that are integrated of

order one, i.e. are stationary in first differences. Taking first differences of

the various time series in such models would result in a loss of information

if cointegration were not taken into account. Cointegration defines long-run

equilibrium relationships between variables in levels, such that linear combi-

nations of these variables are stationary. In contrast to VARs and SVARs,

vector error correction models (VECMs) account for cointegration because

long-run deviations from stationary equilibrium relationships show up as re-

gressors on the right hand side of the equations. Johansen (1995) (see also

Lutkepohl (2005)) described maximum-likelihood estimators for vector error

correction models where no overidentifying restrictions are imposed on the

cointegrating relationships. In such a setting, the estimated parameters of

the stationary linear combinations in levels, i.e. the adjustment parameters

to deviations from long-run equilibria, do not exhibit an economically mean-

ingful interpretation. In contrast, Garratt et al. (2006), (see also Garratt

et al. (1999) and Garratt et al. (2003)) derive long-run restrictions from eco-

nomic theory and apply them on the cointegrating vectors. In this set-up

one can test for the validity of the theoretically implied overidentifying re-

strictions, which is not possible in SVAR models. Therefore in the case of

a two country model, SVECMs allow to test which theoretically motivated

long-run relations are likely to exist between these two countries.

3.1 General Model Formulation

If exogenous variables are allowed for, the most general form of a VECM

with k endogenous variables can be written as (see Garratt et al. (2006)):

A∆zt = ã+ b̃t+ Π̃zt−1 +
ρ1−1∑
i=1

Γ̃i∆zt−i +
ρ2−1∑
i=0

Ψ̃i∆xt−i + εt (1)

11



where A represents a k × k matrix containing the contemporaneous effects

of a change in one endogenous variable to the other endogenous variables,

∆ denotes the differencing operator, zt is a k × 1 vector containing the en-

dogenous variables, ã is a k× 1 vector of intercepts, the term b̃ describes the

coefficients of the time trend, t, Π̃ is the matrix of adjustment coefficients to

deviations from long-run equilibria defined by stationary linear combinations

of endogenous variables in levels, Γ̃i is a k × k matrix containing the coef-

ficients of the vector autoregressive part, Ψ̃i describes the coefficient matrix

of exogenous variables included in the vector xt and εt is a k × 1 vector of

error terms with variance covariance matrix Ω. Finally ρ1 and ρ2 are the op-

timal lag-lengths of endogenous and exogenous variables respectively. These

numbers are obtained by estimating unrestricted VAR models with different

lag specifications in levels and choosing the number of lags that corresponds

to the model which is closest to the data generating process according to

model selection criteria. Applications generally use ρ1 = ρ2 > 1 (see Gaggl

et al. (2008)) or ρ1 > 1 and ρ2 = 1 (see Garratt et al. (2006)). Note that

for exogenous variables a lag-length of zero in first differences is possible, i.e.

they are allowed to affect endogenous variables contemporaneously. To get

to the reduced form of equation (1) it has to be premultiplied by A−1, such

that

∆zt = a+ bt+ Πzt−1 +
ρ1−1∑
i=1

Γi∆zt−i +
ρ2−1∑
i=0

Ψi∆xt−i + ut (2)

where a = A−1ã, b = A−1b̃, Γi = A−1Γ̃i, Π = A−1Π̃ and ut = A−1εt. The

variance covariance matrix of ut can be written as A−1Ω(A−1)t and is denoted

by Σ. Further, Π can be expressed as

Π = αβt (3)

where α is a k× r matrix including the adjustment coefficients to deviations

from the long-run equilibria and β is a k×r matrix including the restrictions
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on the cointegrating relations. In this context r is the number of cointegrating

vectors among endogenous variables and via equation (3) also the rank of Π.

3.2 Identifying Short-run and Long-run Restrictions

For exact identification of the long-run relationships, r2 restrictions must be

imposed on β. Johansen (1988) and Johansen (1991) investigate systems

defined by equation (3) and provide tests for the rank of Π as well as sta-

tistically motivated restrictions for exact identification. These restrictions

assume that the column vectors of β are orthogonal to each other, in the

sense that in the first column vector the first entry is normalized to one,

in the second column vector the second entry is normalized to one and so

on, while the other r2 − r restrictions are zero restrictions on the remaining

first r − 1 entries of each column vector in β. This procedure is meaningful

in a statistical sense, but it renders economic interpretation of equation (3)

impossible if r > 1 (see also Garratt et al. (2006)). Furthermore the restric-

tions depend on the ordering of endogenous variables in the SVECM, such

that different results can be obtained just by changing the rule of sequencing

entries in the zt-vector.

In contrast to this approach, in this thesis overidentifying restrictions are

derived with the help of economic theory, and the validity of these restric-

tions are tested. The corresponding test is a likelihood ratio test, but due

to its small sample properties a bootstrapped version is implemented (see

section 6.3.6 for the details).

In order to recalculate the structural coefficients of (1) from the reduced

form representation (2) additional k2, so called short-run restrictions, need to

be imposed on A and/or Ω (see Garratt et al. (2006)). After this structure is

imposed, impulse response analysis can be performed. The most widely used

method to implement these short-run restrictions proposed by Sims (1980)

requires A to be a lower triangular matrix and Ω to be a diagonal matrix:
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A =


1 0 ... 0

a21 1 ... 0

... ... ... ...

am1 am2 ... 1

 (4)

Ω =


ω11 0 ... 0

0 ω22 ... 0

... ... ... ...

0 0 ... ωmm

 (5)

The described procedure assumes a causal recursive ordering of the variables

in zt. Consequently, also impulse response functions vary subject to the

choice of ordering the endogenous variables and one is confronted with similar

problems as in the case of statistically motivating the identifying restrictions

on the cointegrating vectors.

A similar argument holds for the reduced form representation in equation

(2) without structural restrictions imposed on A. In this case Sims (1980)

suggests the Choleski decomposition Σ = PP ′ where P is a k×k lower trian-

gular matrix, to calculate cumulative orthogonalized scaled impulse response

functions according to the formula (see Pesaran and Shin (1998)):

ψoz,j(h) = BhPej (6)

where ψoz,j(h) refers to the orthogonalized scaled cumulative impulse response

of endogenous variables in period t + h, to an exogenous shock of the error

term in equation j in period t, Bh is a matrix containing the cumulative effects

of such a shock according to the infinite moving average representation, and

ej is a k×1 selection vector with zero in all but the jth entry. Note that due

to the presence of the matrix P in equation (6) a causal recursive ordering

is imposed on the impulse responses.

In this thesis generalized impulse response functions are used as described
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in Pesaran and Shin (1998). In contrast to equation (6), they are calculated

according to the formula:

ψgz,j(h) =
BhΣej√
σjj

(7)

where ψgz,j(h) refers to the generalized scaled cumulative impulse response of

endogenous variables in period t+h, to an exogenous shock of the error term

in equation j in period t, and σjj is the variance of the error term in equation

j. Note that the matrix P does not show up in this representation, such

that the impulse responses do not depend on the ordering of the endogenous

variables. Furthermore, in contrast to orthogonalized impulse responses, all

endogenous variables are contemporaneously affected by an exogenous shock

in a certain period.

To summarize the insights from this section, we are able to circumvent the

need to impose a certain ordering of the endogenous variables by relying on

economic theory in deriving cointegrating relations and by using generalized

impulse response functions instead of the standard approach proposed by

Sims (1980).

3.3 Implementation of the SVECM

In the next chapters the SVECM will be implemented and tested according

to the following steps, which were also suggested by various modelers (see

for example Garratt et al. (2006), Juselius (2007)):

1. First of all we will decide which time series to include as endogenous

and exogenous variables. The relevant considerations can be found in

Appendix A

2. Theoretically motivated potential long-run relationships between the

endogenous variables will be derived and reformulated as statistically

observable stochastic long-run restrictions to be imposed on the entries

of the cointegrating vectors in the error correction part of the model
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3. The variables involved will be inspected graphically and the unit root

properties of these variables will be assessed

4. In the next step, unrestricted VAR(ρ) models for ρ = 1 . . . 4 will be

estimated in order to obtain the optimal lag-length ρ according to the

Akaike Information Criterion (AIC) as well as the Bayes Information

Criterion (BIC)

5. Afterwards, the Johansen test on the cointegration rank r will be per-

formed with an underlying unrestricted VAR(ρ) as basis

6. Subsequently, different combinations of the derived potential long-run

restrictions will be imposed on the cointegrating vectors and the most

suitable combination which additionally fulfills the property that de-

viations from long-run equilibria exhibit stationary behavior will be

chosen for further analysis

7. The plausibility of the restrictions chosen in the previous step will be

assessed according to a bootstrapped version of the likelihood ratio test

on the validity of overidentifying restrictions

8. The residuals of the resulting model will be tested for heteroscedastic-

ity, deviations from the assumption of normality, autocorrelation and

structural breaks. Additionally, generalized impulse response functions

with respect to shocks to the small economy will be obtained and the

plausibility of their shapes as well as their stability properties will be

assessed

9. If the tests show serious deviations from the underlying assumptions,

the model will be reformulated

10. If the model passes the various tests, it will be used to investigate the

interrelations of the two economies under consideration by means of

generalized impulse response functions.

If the model is a good approximation to the data generating process,

generalized impulse response analysis should reveal the consequences of Ger-
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man shocks for the Austrian economy as well as the channels by which these

shocks transmit. Additionally, one should be able to assess the persistence

of these shocks. In the second part of the thesis

11. The obtained model will be used to forecast changes in Austrian in-

flation, changes in Austrian interest rates, changes in Austrian unem-

ployment and Austrian output growth

12. Afterwards these forecasts will be compared to forecasts from univari-

ate time series procedures, single exponential smoothing algorithms

and the Holt-Winters nonseasonal algorithm according to a number of

relevant criteria

13. Finally, a forecast combination between the different methods and the

SVECM will be performed

If the SVECM contains relevant information that none of the other mod-

els incorporates, it will contribute significantly in increasing the predictive

power in a combined forecast. This combined procedure could be used as a

forecasting tool for the Austrian economy and thereby complement existing

models used by economic research institutions.
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4 Theoretically Motivated Long-run

Restrictions

To motivate potential restrictions on the parameters of the cointegrating

vectors, Garratt et al. (2006) use a loose collection of relationships derived

on the basis of arbitrage conditions, accounting identities, solvency require-

ments and assumptions with respect to the production technology in the

investigated economy. This procedure leads to five potential restrictions to

be imposed on the cointegration space of their model: The Money Market

Equilibrium condition (MME), the Fisher Inflation Parity (FIP), the Interest

Rate Parity (IRP), the Purchasing Power Parity (PPP), and an Output Gap

(OG) relation. However, Garratt et al. (2006) do not provide any micro-

foundations for their behavioral equations. In contrast, Gaggl et al. (2008)

use a single open economy model to derive the MME, the FIP and the IRP,

where the PPP has to hold in order for the other three relationships to be

consistent. The OG relation is derived in the same way as in Garratt et al.

(2006).

The purpose of this chapter is to go one step further and set up a model for

two open economies which engage in bilateral trade to motivate the IRP and

the FIP. In this setting the PPP relationship follows immediately from the

underlying preferences of households. The OG relation is a consequence of

the production processes in both economies, following neoclassical production

functions with labor augmenting technological progress. There is no MME

condition because the relevant variables are not included (see Appendix A)

since we shift attention from monetary variables to the labor market. Conse-

quently, a Labor Market Condition (LMC) is required, which relates to the

decision of individuals to migrate between the two economies. This condition

can be motivated by adapting the Gravity Equation concept (see for example

Brücker and Franzmeyer (1997), Huber and Brücker (2003), Feenstra (2004),

Faustino and Leitão (2008)), such that a country with low unemployment

attracts workers from a country where the unemployment rate is high.

Since the theoretical considerations should help to provide applicable re-

strictions on the cointegrating vectors, the data availability (see Appendix
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A) always has to be kept in mind as a limitation when specifying the model.

If the model is able to provide restrictions between data series that are not

available, it includes redundant information and should be simplified. For

example, there is no need to investigate central banks, or decisions of house-

holds with respect to labor market participation, since neither data for high

powered money, nor data for voluntary unemployment are to be included in

the SVECM.

To summarize, in this section five potential restrictions are derived from

a patchwork of different models: OG comes from the properties of the devel-

opment process in neoclassical growth models with exogenous technological

progress, FIP, IRP and PPP result from the first order conditions of dynam-

ically optimizing households, and LMC is a variant of the Gravity Equation.

4.1 Description of the Production Side

The production sides of the two economies are variants of the one described

in Garratt et al. (2006) (see also Barro and Sala-i-Martin (2004) or Romer

(2001)). Output at home and abroad is produced according to the following

constant returns to scale production functions:

Yt = F (Kt, AtLt) = AtLtF
(
Kt

AtLt
, 1
)

= AtLtf(kt) (8)

Y ∗t = F ∗(K∗t , A
∗
tL
∗
t ) = A∗tL

∗
tF
∗
(
K∗t
A∗tL

∗
t

, 1

)
= A∗tL

∗
tf
∗(k∗t ) (9)

where Yt denotes real output at home, Y ∗t denotes real output in the foreign

economy, F ≡ F ∗ and f ≡ f ∗ are well behaved production functions, fulfilling

the Inada conditions, At and A∗t refer to the technological levels of the two

economies and finally kt and k∗t are the capital stocks per unit of effective

labor. With respect to the overall number of employed workers it is assumed

that they represent a fraction of the total population:
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Lt = δNt (10)

L∗t = δ∗N∗t (11)

where Nt denotes the number of inhabitants in the home country, N∗t the

number of inhabitants in the foreign country, and δ and δ∗ comprise a mea-

sure for the fraction of total population employed in the steady state. This

formulation implies that the natural unemployment rate is equal to 1− δ in

the domestic economy and 1− δ∗ abroad.

Furthermore it is assumed that technology behaves according to:

ηAt = θA∗t = Āt (12)

where Āt is the technological level in the rest of the world and η > 1 as well as

θ > 1 measure incompletenesses of the diffusion process i.e. technology adop-

tion barriers (see Parente and Prescott (1994)). Equation (12) states that the

technological levels of the two countries are determined by the world level of

technology. Nevertheless there might be difficulties to implement new ideas

in both regions, such that gaps between technological levels of the domestic

economy, the foreign economy and the rest of the world can remain. Insert-

ing these expressions into the production functions and dividing domestic by

foreign output gives:

yt
y∗t

=
θδ

ηδ∗
f(kt)

f(k∗t )
(13)

where yt and y∗t denote per capita output. Equation (13) describes the fact

that as long as this ratio is smaller or larger than one, there is an output

gap between the two economies, which is determined by the relative size of

technology diffusion parameters, the relative size of natural unemployment

rates and differences in the capital intensities between the two countries.
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4.2 Description of the Consumption Side

In order to get to the FIP, IRP and PPP relations, a dynamic consumer op-

timization model is set up in discrete time for two open economies with cap-

ital mobility restrictions. The underlying structure is that a representative

household seeks to maximize its lifetime utility generated by consumption

of domestic and foreign goods, subject to a budget constraint, which allows

the household to invest its income in domestic capital as well as in domestic

and foreign bonds. From this specification it is clear that there is a market

in the home economy for the domestic and foreign consumption aggregates,

for domestic and foreign bonds, but only for domestic capital. In addition, a

cash-in-advance constraint in the spirit of Clower (1967) is implemented, i.e.

individuals are allowed to consume from money holdings but not from cap-

ital or bonds in the subsequent period. This means that if households want

to consume they are forced to convert assets, which pay a rate of return,

into money, which does not pay any return but is subject to inflation. This

conversion has to take place in period t − 1, so that in period t individuals

own liquid assets, allowing them to buy consumption goods. Therefore the

representative household solves the following optimization problem:

max
Ct,C∗

t

∞∑
t=0

ρtU(Ct, C
∗
t ) (14)

subject to

Ct + P ∗t C
∗
t +Kt +Bt +B∗t +Mt = (1 + rt)Kt−1 + wtLt +

1 + it
1 + πt

Bt−1 +

+
1 + i∗t
1 + π∗t

B∗t−1 +
Mt−1

1 + πt
(15)

Ct + P ∗t C
∗
t ≤

Mt−1

1 + πt
(16)

where ρ is the subjective discount rate, Ct denotes consumption of the do-

mestically produced aggregate, which is the numèraire good, C∗t refers to
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consumption of the aggregate produced in the foreign country, P ∗t to the

price level of foreign goods, Kt is the real capital stock, Bt are real bonds is-

sued by the home government, B∗t stands for real bonds issued by the foreign

government, Mt refers to individual’s real money holdings, (1 + rt) denotes

the capital rental rate, which is equal to the real rate of return since we do

not allow for depreciation, (1 + it) and (1 + i∗t ) describe the domestic and

foreign nominal interest rates on bonds respectively, (1+πt) and (1+π∗t ) are

the domestic and foreign inflation rates, wt is the real wage rate and Lt refers

to labor supply of households. The left hand side of equation (15) comprises

total household expenditures and savings in period t, whereas the right hand

side refers to total household income in the same period. Note that both

countries are members of a currency union and so exchange rates are not

included as explanatory variables in the SVECM. Consequently, they do not

show up in equation (15). Equation (16) is the cash-in-advance constraint,

which ensures that expenditures for consumption in period t are not higher

than the period t-real value of nominal liquid assets carried over from period

t− 1.

In addition, the following assumptions are implemented: First of all,

households inelastically supply all available time on the labor market, i.e.

they do not value leisure. As a consequence, there is no decision involved

with respect to labor market participation. Instead, no matter how low real

wages are, it is optimal for individuals to work, hence there is no volun-

tary unemployment and Lt is exogenously given by time restrictions. This

assumption is implemented since we do not have data with respect to vol-

untary unemployment. Secondly, as individuals are rational, they do not

convert more assets into money than absolutely necessary to finance the op-

timal amount of consumption in period t. Consequently, the cash-in-advance

constraint holds with equality. Lastly, individuals are assumed to have Cobb-

Douglas preferences over the two available consumption goods, such that the

period utility function can be written as

U(Ct, C
∗
t ) = Cα

t C
∗1−α
t (17)
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where α is the budget share of the consumption good produced at home.

With these assumptions implemented, one can solve the dynamic optimiza-

tion problem either by means of the Bellman Principle or by the method of

Lagrange (see for example Stokey et al. (1989) or Sundaram (1996)). The

corresponding optimality conditions are derived according to the second ap-

proach in Appendix B. After reformulating these conditions, the following

relationships, whose logarithmic expressions are estimable versions of the

theoretically implied restrictions, can be derived:

1 + rt =
1 + it
1 + πt

(18)

1 + it
1 + πt

=
1 + i∗t
1 + π∗t

(19)

CPIt
CPI∗t

= 1 (20)

where CPIt denotes the consumer price index at home and CPI∗t the con-

sumer price index abroad. Equation (18) describes the FIP, which states that

the real rate of return on capital, i.e. the real interest rate, has to be equal to

the deflated nominal interest rate. Equation (19) is the IRP in the absence

of an exchange rate, stating that the real interest rates in both economies

have to be equal to avoid arbitrage rents. Finally, equation (20) is the PPP

in the absence of an exchange rate, which relates the price levels between the

domestic and foreign economy in terms of consumer price indices, stating

that they have to be equal.

4.3 Description of the Gravity Equation and Labor

Migration

The Gravity Equation (see for example Feenstra (2004), Faustino and Leitão

(2008)) is used in international trade literature to estimate bilateral trade
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flows. Basically it states that trade between two economies is positively linked

to their size and negatively linked to their distance. Following Faustino and

Leitão (2008) it can be written as:

Fij = G
Y β1
i Y β2

j

Dβ3
ij

(21)

where Fij denotes the flow of goods from country i to country j, Yi and

Yj denote the country sizes, usually measured by GDP, Dij is the distance

between the two countries, and G is some “gravitational” constant. Expres-

sions β1, β2 and β3 represent parameters to be estimated in the logarithmic

expression of equation (21):

logFij = logG+ β1 log Yi + β2 log Yj − β3 logDij + u

where u is the error term assumed to have a mean of zero and variance σ2.

Versions of this equation can be used to characterize migration instead of

international trade flows (see Brücker and Franzmeyer (1997), Huber and

Brücker (2003), Barro and Sala-i-Martin (2004)). Compared to trade flows

there are several other forces that promote migration, the two most important

ones being differences in wage income levels and differences in household labor

market perspectives between two economies. Additionally, the interpretation

of distance is modified in the literature to account for legal impediments,

language barriers, personal reluctance to migrate, or simply bureaucratic

obstacles as well (see for example Borjas (1995), Borjas (1996)).

In the case considered here, where it is optimal for individuals to supply

all their available time on the labor market, independently of the real wage

rate, the income differential between the two economies is not an accurate

measure to be included in the specific Gravity Equation. Furthermore, as

compared to other areas (for example Mexico and the United States), in-

come levels do not deviate substantially between Austria and Germany, so

there is no need to consider them as explanatory variables for bilateral migra-
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tion. Instead, the difference between the two unemployment rates is a more

promising determinant. Therefore the Gravity Equation has the following

form in our case:

M = β4

[
[(1− δ)− (1− δ∗)]

D

]
+ u (22)

In this specification, M characterizes migration from Austria to Germany,

which is positive if the difference of the unemployment rates (1−δ)−(1−δ∗) is

similarly positive, and negative otherwise. The parameter D is the modified

distance parameter, measuring the overall costs of migration as described

above, and β4 is the parameter to be estimated. Note that no constant term

is included, since the theoretical considerations, especially the inelastic labor

supply of households, do not allow other factors to drive migration. The

chosen form of the Gravity Equation ensures that there is migration as long

as there is a difference between the unemployment rates. Therefore

1− δ
1− δ∗

= 1 (23)

holds in the long-run, stating that home and foreign unemployment rates tend

to equalize. Equation (23) can be interpreted as follows: Optimal behavior

of individuals ensures that they supply their whole available time on the

labor market. In equilibrium there is unemployment in both economies and

therefore some agents, who do not find work in the economy with the higher

unemployment rate, choose to migrate to the other region, after taking into

account the associated costs. This process lasts until the gap between the two

unemployment rates, i.e. the fundamental reason for migration, is eventually

eliminated. Note that this has an influence on equation (13) in the sense

that the ratio δ
δ∗

disappears and it has to be modified to

yt
y∗t

=
θ

η

f(kt)

f(k∗t )
(24)
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which will be used in the next subsection to describe the logarithmic version

of the output gap relation.

4.4 Implementation of the Restrictions

The theoretically derived equations (18), (19), (20), (23) and (24) have to

be matched with the data in Appendix A, and so logarithmic versions are

obtained as:

log(1 + rt) = log(1 + it)− log(1 + πt) (25)

log(1 + it)− log(1 + πt) = log(1 + i∗t )− log(1 + π∗t ) (26)

log(CPIt) = log(CPI∗t ) (27)

log(yt)− log(y∗t ) = log(θf(k))− log(ηf(k∗)) (28)

log(1− δ) = log(1− δ∗) (29)

which are deterministic conditions, holding in the theoretical model. The

empirically observable time series are subject to various shocks, but forces

ensure that the economy fulfills the described restrictions in the long-run.

However, during the adjustment process, they need not be fulfilled with

equality. Instead, so called “long-run errors” (Garratt et al. (2006)) describe

deviations from these relations in the short-run. As a consequence (25), (26),

(27), (28) and (29) are augmented by an error term, i.e. reformulated in a

stochastic way, to represent cointegrating equations, which can be estimated.

Recalling that the vector zt contains the following elements (see Appendix

A): (zt)
t = (DPAT, PD,RAT,RGER,UAT,UGER, Y AT, Y GER) these

cointegrating equations read:

RATt −DPATt = β1,0 + ξ1,t+1 (30)

RATt −RGERt = β2,0 + ξ2,t+1 (31)

PDt = β3,0 + ξ3,t+1 (32)
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Y ATt − Y GERt = β4,0 + ξ4,t+1 (33)

UATt − UGERt = β5,0 + ξ5,t+1 (34)

where βi,0 represents the constant and ξi,t+1 the error term, i.e. the “long-

run error” of the respective restriction. The first equation is the stochastic

version of the FIP, and consequently β1,0 represents an estimate for the real

interest rate. The second equation refers to the stochastic version of the IRP,

such that the estimated value of β2,0 should be zero. The third relation is

the stochastic version of the PPP, so the estimate of β3,0 should be zero as

well. The next equation describes the stochastic OG relation, with β4,0 being

an estimate for log(θf(kt)) − log(ηf(k∗t )), the natural output gap between

the two economies, and the last equation is the stochastic counterpart of the

LMC, stating that the unemployment rates of the two economies should be

equal in the long-run, which implies β5,0 = 0. Note that the “long-run errors”

ξi,t+1 have to be stationary, otherwise the restriction cannot be imposed as

an estimable cointegrating equation (see Juselius (2007)). Putting all these

things together the following version of equation (2)

∆zt = a+ bt+ αβtzt−1 +
ρ1−1∑
i=1

Γi∆zt−i + Ψ0∆xt + ut (35)

where exogenous variables are only allowed to affect endogenous variables

contemporaneously as in Garratt et al. (2006), the vector xt contains the oil

price, so xt = (POIL), and the matrix βt has the following form:

βt =



−1 0 1 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 −1

0 0 0 0 1 −1 0 0


(36)

can be obtained. Again recalling the zt-vector, the first row of this matrix

represents the FIP, the second row the IRP, the third row refers to the PPP,
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the fourth row to the OG relation, and the last row defines the restrictions

implied by the LMC. After establishing the general form of the model, the

next tasks are to find out the appropriate lag-length and to test whether such

a specification is reasonable. Before the respective analyses are carried out,

the properties of the variables in the zt-vector are investigated in section 5.
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5 Properties of the Variables

In this section, the properties of the variables used in the estimation proce-

dure are assessed. Graphical inspection should reveal whether one has to be

aware of outliers or structural breaks, and should help to identify the unit

root properties of the various series. In addition, some commonly used unit

root tests, the augmented Dickey-Fuller test (ADF-test), the Phillips-Perron

test (PP-test) and the Kwiatkowski-Phillips-Schmidt and Shin test (KPSS-

test) are carried out to investigate those unit root properties in more detail.

The associated calculations were performed using the Eviews software pack-

age (Eviews 6 (2007)). Note that as endogenous variables we use logarithmic

indices, which are normalized to one in the base year. Therefore negative

values of the variables in levels will show up.

5.1 Prices

Figure 1 shows the Austrian price level, and its first and second differences. In

the original series there were two outliers in the Quarters 1984:1 and 1990:1,

which resulted from increases in consumption taxes. To adjust for these

outliers the associated growth rates of the prices were replaced by the four

year averages of the preceding corresponding quarters. Since the price levels

were calculated as the logarithm of the price index with the first quarter of the

year 2000 as base year, PAT has a value of zero in that quarter. The second

picture of figure 1 shows the first differences of the logarithmic price level, i.e.

the inflation rate. One can easily see that during the 1980s the inflation rate

declined, which was due to the disinflationary policy of the Austrian Central

Bank at that time. A similar effect is present in figure 2, which shows the

German price level, German inflation and the first differences of German

inflation. In contrast to Austria, inflation rose again in Germany during the

early 1990s, due to the boost in demand resulting from unification.

The two graphics related to Austrian and German prices indicate that

the logarithmic price levels are integrated of order two, i.e. they would have

to be differenced twice in order to obtain a stationary series. Intuitively, the

disinflationary policy of many central banks during the 1980s could explain
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Figure 1: Austrian Price Level, Inflation and First Differences of Inflation

that there was a shift in the mean of inflation (the differenced logarithmic

price levels) during this period. This would provide a theoretical explana-

tion for the price level being I(2). In the Austrian case the ADF-test, as

well as the KPSS-test confirm this suspicion, whereas in the German case

all tests suggest to treat the logarithmic price levels as I(1) (see Appendix

C). However, there are some arguments that nevertheless suggest to treat

German prices as I(2). First of all, when forecasting is the central purpose
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Figure 2: German Price Level, Inflation and First Differences of Inflation

of the model, the mistake to treat an I(1)-variable as I(2) has much less se-

rious consequences than the mistake to treat an I(2)-variable as I(1). The

former case of misspecification is associated with a loss of information but

the model is fit to stationary data and forecasts are robust with respect to

structural breaks (see Hendry (1997), see also Clements and Hendry (2001)).

In the latter case of misspecification the model is fit to nonstationary data

and could produce spurious outcomes. Secondly, as Garratt et al. (2006)
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point out, the Fisher Inflation Parity requires inflation and interest rates to

have the same order of integration. If one treats interest rates as I(1), as

suggested in section 5.2, then the logarithmic price levels would have to be

I(2) according to this argument. These points, together with the implications

of visual inspection, justify treating Austrian and German price levels as I(2)

and therefore both inflation rates as I(1).

The next variable included in the SVECM is the price differential between

Austria and Germany calculated as PAT −PGER. The diagram of the vari-

able in levels reveals that during the 1970s and 1980s Austrian prices steadily

increased in relation to the German price level. After German unification the

pattern changed until the mid-1990s. Since then the relative prices appeared

more or less constant.

The first differences of the price differential seem to exhibit a stationary

behavior. In addition, all three tests unambiguously lead to the conclusion

that the price differential is I(1), and it is treated as such in the remaining

analysis.
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Figure 3: Austro-German Price Differential and its First Differences
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The oil prices and their first differences are described in figure 4, where

the impacts of the two oil crises in 1973 and 1979 can be identified. Both

events led to sustained increases in oil prices. Afterwards the prices kept

roughly constant or fell to a small extent, until the next hike occurred due to

the Gulf War in 1990. Beginning in 2004, oil prices steadily increased again

until the end of the sample period in the second quarter of 2007.

Looking at the first differences, one would expect that the variance of

oil prices increased after the second oil crisis. Nevertheless, all three tests

conclude that the first differences of the variable are stationary at the five

percent significance level and therefore oil prices are treated as I(1) too.
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Figure 4: Oil Price and its First Differences

5.2 Interest Rates

When considering the behavior of the interest rates, the first fact worth

mentioning is that the Austrian interest rate was lower than the German

rate in the aftermath of the first oil crisis. This could be due to the fact that
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the Austrian Central Bank did not concentrate that much on inflation at

that time but also tried to stabilize output growth. In the rest of the sample

the behavior of both interest rates is similar: During the 1980s and in the

early 1990s they were quite high due to the aforementioned disinflationary

policies of central banks, but they decreased considerably afterwards.
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Figure 5: Austrian Interest Rate and its First Differences

With respect to the unit root properties, all three tests conclude that

Austrian interest rates are I(1) at the five percent significance level. In the

case of German interest rates the PP-test and the KPSS-test also indicate this

but the ADF-test suggests treating German interest rates as I(0). The same

arguments can be advanced as in the previous section in favor of assuming

a higher order of integration in case of doubt. In addition, implementation

of the uncovered interest rate parity requires Austrian and German interest

rates to have the same order of integration. Therefore both interest rates are

treated as I(1) in the remaining analysis.
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Figure 6: German Interest Rates and its First Differences
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5.3 Unemployment Rates

The unemployment rates were comparatively low in both economies during

the 1970s. After the first oil crisis they increased considerably, and in the

early 1980s they again rose to a large extent. Since then, unemployment

rates seem to tend slightly upwards. The first differences indicate that un-

employment rates were quite volatile during the early 1970s, but that this

volatility decreased considerably over time.
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Figure 7: Austrian Unemployment and its First Differences

The PP-test and the KPSS-test both suggest treating Austrian and Ger-

man unemployment rates as I(1). The ADF-test identifies the Austrian un-

employment rate as I(1) but the German unemployment rate as I(0). There

is more evidence in favor of unemployment rates being stationary in first

differences and so they are treated as I(1) in the remaining analysis.
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Figure 8: German Unemployment and its First Differences

5.4 Output

The next two graphics display Austrian and German output levels and their

first differences. In both countries they appear to be difference-stationary. In

the case of German output all three tests confirm this suspicion, whereas for

Austria the ADF-test and the PP-test do not. Since the KPSS-test identifies

Austrian Output as I(1) and it does not make much sense to treat Output

levels as stationary, they are included in the SVECM as I(1)-variables.

Again it is worth mentioning that the two oil crises had considerable

influence on the data series under consideration. It seems as if these shocks

had a larger impact on the German economy as compared to Austria. This

could be due to the fact that interest rates were lower in Austria after the oil

price shocks and consequently the Austrian Central Bank did not concentrate

that much on inflation but tried to stabilize output growth.

Furthermore, in both countries the slowdowns at the beginning of the

1990s and after the bursting of the “New Economy” bubble are clearly visible.
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Figure 9: Austrian Output and its First Differences

The latter seemed to be more serious in Germany, which conforms with the

views commonly expressed by commentators during this period. In looking

at the first differences, one would suspect that output volatility declined in

both economies during the time span under consideration but unit-root tests

do not confirm this.
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Figure 10: German Output and its First Differences

39



6 Estimating the Structural Vector Error

Correction Model

In this section the econometric implementation of the model will be carried

out. First of all the optimal number of time lags is assessed according to

the Akaike Information Criterion (AIC) and the Bayes Information Criterion

(BIC), afterwards the associated number of cointegrating vectors among the

endogenous variables is tested for. With these outcomes in mind, models

are estimated with all possible combinations of theoretically implied restric-

tions imposed on the cointegrating vectors. The results are used to identify

the model which is closest to the data generating process. Subsequently, a

number of tests are applied to identify misspecifications, which have to be

removed and to find out whether there is scope for improving the model in

various other ways.

6.1 Lag Selection

In the first step, VAR(ρ) models were estimated in levels for ρ = 1...4 and

compared to each other according to AIC and BIC. Since there are eight

endogenous variables in the SVECM and only 146 observations are available

for estimation, lag orders higher than 4 would clearly lead to models that

could not be estimated in a meaningful way. The resulting values of AIC and

BIC are displayed in table 1, where three asterisks indicate smallest numbers

in the respective column.

LAGS AIC BIC

1 -49.4882 -48.0301 ***
2 -50.3602 -47.5936
3 -50.3207 -46.2336
4 -50.9030 *** -45.4833

Table 1: Model Selection Criteria
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Not surprisingly, BIC favors a specification with one lag only, whereas

AIC favors the specification with four lags. While BIC is a consistent model

selection criterion for the in sample fit, meaning that it is able to find the

model closest to the data generating process if the number of observations

tends to infinity, AIC is designed to select the model with the best forecasting

properties (see Lutkepohl (2005)). Since the purpose of this analysis is to

perform impulse response analysis and to forecast certain time series, AIC is

more appropriate than BIC. For this reason, a lag-length of four is chosen in

the subsequent analysis. The specification with four lags in levels corresponds

to one with three lags in first differences, so the SVECM will include variables

from lag order t− 1 up to lag order t− 3. Specification tests performed later

confirm that a lag-length of four in levels is a good choice.

6.2 Properties of the Cointegrating Relations

With the results of section 6.1 in mind, the trace test was carried out to

find the number of cointegrating relations between endogenous variables (see

Johansen (1995), Juselius (2007), see also Eviews 6 (2007) User’s Guide). In

the underlying case the test regression has four lags in levels and hence three

lags in first differences. The corresponding scenario is marked with three

asterisks in table 2. Recalling the potential restrictions on the cointegrating

relations from section 4

RATt −DPATt = β1,0 + ξ1,t+1

RATt −RGERt = β2,0 + ξ2,t+1

PDt = β3,0 + ξ3,t+1

Y ATt − Y GERt = β4,0 + ξ4,t+1

UATt − UGERt = β5,0 + ξ5,t+1

it is clear that economic theory only allows for intercepts and not for trends.

Therefore the trace test indicates the presence of two cointegrating relations
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between endogenous variables.

Lags intercept intercept
and trend

1 6 5
2 3 3
3 *** 2 3
4 3 3

Table 2: Trace Test on the Number of Cointegrating Relations

Altogether the theoretical discussion revealed the possibility of five coin-

tegrating relations among endogenous variables. However, the trace test in-

dicates that only two of them are present in the data. Therefore the question

arises which of the potential relationships are the “true” ones. This question

can be reformulated to ask which combination of the possible cointegrating

relations leads to a model that fits closest to the data generating process.

From this point of view the natural way to proceed is to estimate different

models with all possible combinations of the five potential long-run restric-

tions imposed on the two cointegrating vectors and to assess the resulting

specifications according to AIC and BIC. Since all models under considera-

tion have the same degrees of freedom, AIC and BIC only reflect differences

in the likelihood. Consequently, the model with the lowest AIC also exhibits

the lowest BIC and can be regarded as the best approximation to the data

generating process. The corresponding values of the two model selection cri-

teria are shown in table 3 for all possible combinations of the theoretically

implied restrictions imposed on the cointegrating vectors.
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PPP OG OG IRP IRP
+ + + + +

LMC PPP LMC PPP OG

AIC -50.49 -50.42 -50.37 -50.52 -50.45
BIC -45.57 -45.49 -45.45 -45.59 -45.53

IRP FIP FIP FIP FIP
+ + + + +

LMC PPP OG IRP LMC

AIC -50.55 -50.53 -50.51 -50.59 -50.57
BIC -45.62 -45.61 -45.59 -45.66 -45.65

Table 3: AIC and BIC for Different Combinations of the Available Restric-
tions

The model which appears to be the best one on first sight includes the

FIP and the IRP conditions. Due to the fact that since 1998 interest rates

of Austria and Germany are coupled, the long-run errors in IRP are zero

afterwards. For the cointegrating equations to be estimated appropriately,

another important property of the resulting model would be that the “long-

run errors” of the finally implemented cointegrating relations exhibit a sta-

tionary behavior. As this is not the case for the IRP condition, we decided

to look for other model restrictions which fulfill this requirement.

The second best model chosen by AIC and BIC includes the FIP and the

LMC. In the model including FIP and LMC the long-run errors exhibit a

stationary behavior, which can be seen in figure 11. Furthermore, a Dickey-

Fuller test was performed on these “long-run errors”, which rejected the

null hypothesis of unit roots in both cases at the five percent significance

level. Taking both, the values of model selection criteria as well as the unit

root properties of the resulting “long-run errors” into account, leads to the

conclusion that a combination of FIP and LMC is the most appropriate
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Figure 11: Long-run Equilibrium Errors for FIP and LMC

In addition to the two criteria mentioned above, the validity of the im-

posed restrictions is tested in section 6.3.6 by means of a bootstrapped like-

lihood ratio test suggested by Garratt et al. (2006). This test is not able to

reject the restrictions implied by the FIP and the LMC at the five percent

significance level. Therefore also from this point of view the model is deemed

to be appropriate. With all information gathered thus far, the specific model

has the following form in our case and is estimated in Eviews 6 (2007):

∆zt = a+ αβtzt−1 +
3∑
i=1

Γi∆zt−i + Ψ0∆xt + ut (37)

with

βt =

 −1 0 1 0 0 0 0 0

0 0 0 0 1 −1 0 0

 (38)

1Due to the shrinkage principle (see for example Diebold (2007)) it could nevertheless
be a good choice to include the IRP condition instead of the LMC, if the model is used for
forecasting only. Here we follow the procedure outlined in the main text which is consistent
with the theoretical literature on cointegration (see for example Juselius (2007)).
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containing the FIP in the first row and the LMC in the second.

The parameter estimates and associated t-values are displayed in Ap-

pendix D. Residual tests carried out in section 6.3 are able to reject the null

hypothesis of homoscedasticity in some of the series so standard errors and

t-values are biased and have to be interpreted cautiously.

Most of the parameters have reasonable signs according to an economic

interpretation: All three lags of Austrian inflation have a positive impact on

Austrian interest rates, suggesting that central banks react to increases in

inflation by tightening monetary policy and hence increasing interest rates.

Furthermore, the inverse relationship between inflation and unemployment

implied by the Phillips curve can be observed. In addition, German inter-

est rates have a positive impact on German unemployment, reflecting the

fact that high interest rates tend to hamper investment and the creation of

new jobs. Conversely, higher unemployment rates are associated with lower

interest rates in both economies, which would imply that the target of the

central banks was not only to keep inflation low they also cared for stabilizing

output growth and hence unemployment in the short-run. Additionally, it

is worth mentioning that higher interest rates seem to have a negative effect

on inflation in both economies, as one would expect from economic theory.

6.3 Model Fit and Specification Tests

In this section the model is assessed according to the adjusted R2 and whether

specification tests report serious deviations from the underlying assumptions

of a VEC-model. In table 4, adjusted R2 is reported for each of the en-

dogenous variables. Additionally, the p-values of the Jarque-Bera test on

normality of the residuals and those for the White test on heteroscedasticity

are provided. In the former case, the null hypothesis is that the residu-

als under consideration are normally distributed, in the latter case the null

hypothesis is homoscedasticity.
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D(DPAT) D(PD) D(RAT) D(RGER)

adjusted R2 0.5384 0.1255 0.4193 0.3047
Jarque-Bera 0.0960 0.2259 0.3679 0.0000

White 0.0798 0.2434 0.0416 0.0008

D(UAT) D(UGER) D(YAT) D(YGER)

adjusted R2 0.6090 0.7682 0.4383 0.0740
Jarque-Bera 0.0000 0.0000 0.8313 0.0255

White 0.0022 0.0474 0.0187 0.1722

Table 4: Adjusted R-squared, Jarque-Bera Test and White Test for the Re-
sulting Model

6.3.1 Adjusted R2 and Model Fit

As compared to similar models, which allow at most for two lags of endoge-

nous variables and use monetary aggregates instead of unemployment rates

(Gaggl et al. (2008), Garratt et al. (2006)) the fit of the SVECM measured

by the adjusted R2 is quite good. Especially the adjusted R2 for changes in

Austrian inflation, changes in Austrian interest rates, changes in Austrian

unemployment and Austrian output growth, which are the main series of

interest in the impulse response analysis and the forecasting procedure later

on, exhibit quite large values between 0.4 and 0.61. In contrast, the model

does not perform very well with respect to changes in the price differential

and foreign output growth. Since these two variables do not play such an

important role in impulse response analysis and forecasting later on, this is

of minor importance.

One source for the poorer fit of other models could emerge from aggre-

gating different data series, coming from individual countries, into one series

of the hypothetical foreign economy. As mentioned in the introduction, such

an approach collects the measurement errors and it tends to smooth the data

series for the foreign economy since shocks are averaged out.
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6.3.2 White Test on Heteroscedasticity

To get an overall impression regarding the behavior of the residuals, they

are plotted in Appendix E.1 together with lines at plus/minus two standard

deviations. Despite the presence of some outliers, especially during time

periods that coincide with oil crises, there do not seem to be obvious problems

with the data. Nevertheless, there is some indication of heteroscedasticity in

the residuals, i.e. the variance of some series decreased over time.

Whether these effects are significant depends on the results of the White

test. It rejects homoscedasticity with respect to interest rates, unemployment

rates and Austrian output. If heteroscedasticity is present, standard errors

and t-values are biased and should be interpreted with care. Another problem

could arise if confidence intervals for impulse response functions relied on

asymptotic standard errors, since they would be biased. Nevertheless, the

parameter estimates are still unbiased and consistent, so there is no need to

respecify the model in this case.

6.3.3 Jarque-Bera Test on Normality

The Jarque-Bera test rejects normality of the residuals for the two unem-

ployment series, the German interest rates and German output. Authors

address such problems different weights (see Juselius (2007), Garratt et al.

(2006)) where the latter accepts deviations of the residuals from normality.

Since changes in the specification did not help in solving the problem but

seemed to have negative impacts on other parts of the model, it was decided

to proceed with the current formulation. As deviations from normality of the

residuals indicate that there are influences on the series which are not yet

included in the model, there may be scope for finding these influences and

therefore finding more accurate endogenous variables in future research.

6.3.4 Portmanteau Test on Autocorrelation

A serious misspecification would arise if the residuals were correlated. Since

lagged dependent variables show up as regressors on the right hand side,
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LAG D(DPAT) D(PD) D(RAT) D(RGER)

1 0.6040 0.9670 0.9550 0.9330
2 0.8650 0.9420 0.9470 0.9400
3 0.6780 0.9720 0.9880 0.5700
4 0.2460 0.8650 0.8780 0.6430
5 0.3370 0.7300 0.3150 0.7600
6 0.4470 0.8300 0.2840 0.4930
7 0.5420 0.6340 0.3540 0.5650
8 0.6320 0.5570 0.4440 0.5240
9 0.6770 0.6390 0.5230 0.4880
10 0.7330 0.6210 0.4750 0.5810
11 0.7440 0.6510 0.5530 0.6690
12 0.8050 0.1840 0.5570 0.7370

LAG D(UAT) D(UGER) D(YAT) D(YGER)

1 0.5330 0.9320 0.8880 0.9240
2 0.8230 0.6270 0.9370 0.8820
3 0.8930 0.5140 0.3100 0.9610
4 0.8770 0.2050 0.4440 0.5780
5 0.0550 0.2690 0.2070 0.6880
6 0.0830 0.3790 0.2370 0.7800
7 0.1250 0.3140 0.3200 0.8610
8 0.1760 0.3440 0.2070 0.6210
9 0.2440 0.3210 0.2760 0.6360
10 0.2930 0.3870 0.3560 0.7240
11 0.3270 0.2550 0.3600 0.7440
12 0.1300 0.2390 0.3520 0.5920

Table 5: P-values of the Portmanteau Test on Autocorrelation among Resid-
uals

parameter estimates would be biased and inconsistent in this case. Conse-

quently, the model would have to be reformulated or allowed to include higher

lag orders. Since we used AIC as the relevant model selection criterion, it is

quite unlikely that autocorrelation among residuals is left. However, since the
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literature often suggests the use of tests for autocorrelation (see for example

Lutkepohl (2005), Juselius (2007)), we additionally computed the Portman-

teau test up to a lag-order of twelve. Table 5 contains the corresponding

p-values, where the null hypothesis is that the residuals are serially uncor-

related up to the respective lag. The table reveals that, on the five percent

significance level, the null hypothesis cannot be rejected for all endogenous

variables and all lag-orders. Consequently, there is no need to respecify the

model from this point of view.

6.3.5 CUSUM Test on Parameter Stability

Regarding the stability of parameters the CUSUM test is performed (see

for example Johnston and DiNardo (1997) and the results are displayed in

Appendix E.2. There are no significant deviations from the null hypothesis

that parameter estimates are constant over the whole sample period at the

five percent level. This result is very important since it does not indicate

the presence of a regime change, i.e. a structural break in the data series.

In addition, the CUSUMSQ test was performed, which is able to detect

deviations from the assumption of homoscedasticity in the error terms. Since

homoscedasticity was already rejected by the White test in some cases, and

the CUSUMSQ tests only confirm the rejections, the results are not shown

here for the sake of saving space2.

6.3.6 Likelihood Ratio Test on the Validity of Overidentifying Re-

strictions

Where r cointegrating relations are present, r2 restrictions are needed to

exactly identify the parameters of these relations. In the case considered so

far, this means that four restrictions would suffice. However, economic theory

provides eight restrictions, so the system is overidentified. It is possible to

assess the validity of overidentifying restrictions by testing the null hypothesis

that the overidentified model is the “true” model against the alternative

hypothesis that a VEC-model with two unrestricted cointegrating vectors

2These results are available from the author upon request.
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is the “true” model. This can be done by a standard likelihood ratio test.

However, Garratt et al. (2006) point out that the critical values of this test are

biased for small sample sizes so they advocate the use of bootstrapped critical

values. We follow a similar approach where the bootstrapping procedure is

nonparametric, and can be described by the following steps (see for example

Johnston and DiNardo (1997), Lutkepohl (2005)):

1. Estimate the model and store the fitted values as initial estimates

2. Randomly draw residuals with replacement from the residuals of the

model obtained in the previous step

3. Calculate the mean of the randomly drawn residuals (which should be

close to zero) and subtract it from them to get new residuals

4. Add the new residuals to the initial estimates

5. Estimate the model subject to the overidentifying restrictions and store

the value of the log-likelihood (logl)

6. Estimate the model subject to the exactly identifying restrictions and

store the value of the log-likelihood (logl)

7. Calculate the test statistic as 2(logl(ei) − logl(oi)), where ei and oi

denote the exactly identified and overidentified model respectively, and

store this test statistic

8. Repeat these steps a number of times and obtain the upper critical

value (since it is a one sided test) from the stored test statistics

The resulting bootstrapped distribution of the test statistic is shown in

figure 12 for 2000 replications of the described algorithm. The density func-

tion of the bootstrapped critical values was obtained with the help of a Gaus-

sian kernel estimate under the default smoothing bandwidth in the software

package R (R Development Core Team (2007)).

The upper 5 percent critical value of this distribution is 52.27, whereas the

test statistic obtained by comparing the original overidentified model with
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the exactly identified one exhibits a value of 37.64. Therefore the validity of

the theoretically implied overidentifying restrictions cannot be rejected and

hence there is no need to lift them.

This represents a first central result because the presence of the FIP in

Austria and the LMC between Austria and Germany cannot be rejected.

Consequently, the labor markets of the two countries seem to be closely

related and allowing for labor migration when specifying the restrictions on

the cointegrating vectors is a good choice.

 

Figure 12: Density-Function of 2000 Bootstrapped Critical Values for the
Likelihood Ratio Test on the Validity of Overidentifying Restrictions

To summarize, specification tests with respect to normality and ho-

moscedasticity of the error terms suggest that there might be scope for finding

other factors that influence the endogenous variables in this model. Since the

SVECM is already very large, including more time series as endogenous and

exogenous variables as well as increasing the lag-length will render meaning-

ful estimation of the parameters impossible. However, it could be a good

choice to replace some of the included series by others and to investigate

whether this leads to an improvement in the model fit. This is suggested
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for future research. As there is no evidence for the presence of autocorrela-

tion among the residuals or for instability of the estimated parameters, the

model is acceptable. Furthermore the test on the validity of overidentifying

restrictions was not able to reject the null hypothesis so the decision was

to keep the specified form of the SVECM for impulse response analysis and

forecasting.
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7 Generalized Impulse Response Analysis

Since the model performed well with respect to criteria assessing its fit, with

respect to model specification tests and with respect to tests on the validity

of overidentifying restrictions imposed on the cointegration space, it will be

used to study the impacts of different shocks to domestic and foreign variables

in the next two sections.

7.1 Effects of Domestic Shocks on Austrian Variables

First of all the estimated model is used to investigate responses of Austrian

inflation, Austrian interest rates, Austrian unemployment and Austrian out-

put to shocks in each of these variables themselves. These results can be

used to assess whether the implications of the model are reasonable at all,

but they also have an intrinsic value, since they expose domestic adjustment

processes to exogenous shocks.

The method used for computing these impulse response functions is de-

scribed in section 3.2. It is called generalized impulse response analysis, is

due to Pesaran and Shin (1998) (see also Koop et al. (1996)) and does not

rely on an arbitrary orthogonalization of shocks, i.e. the order of endogenous

variables does not matter. Since Eviews 6 (2007) does not compute asymp-

totic standard errors for the point estimates of impulse response functions

in VEC-models, a bootstrapping procedure was used to obtain 95 percent

confidence intervals. Implementing this procedure required the following cal-

culations, quite similar to those in section 6.3.6:

1. Estimate the model and store the fitted values as initial estimates

2. Randomly draw residuals with replacement from the residuals of the

model obtained in the previous step

3. Calculate the mean of the randomly drawn residuals (which should be

close to zero) and subtract it from them to get new residuals

4. Add the new residuals to the initial estimates
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5. Reestimate the model and obtain generalized impulse response func-

tions

6. Repeat these steps a number of times and obtain the upper and lower

critical values from the stored generalized impulse response functions

The first innovation to be considered in figure 13 is a one standard devi-

ation shock to Austrian inflation (DPAT). The generalized impulse response

functions over a time span of 40 quarters are displayed as solid lines, whereas

the corresponding lower and upper bounds of the bootstrapped 95 percent

confidence intervals are displayed as dashed lines. Note that the number of

iterations in the bootstrapping procedure was set to 2000.

As can be seen, the model exhibits stable properties, i.e. generalized

impulse response functions do not tend to plus/minus infinity. In addition,

the responses are plausible and have a clear economic interpretation: Output

and unemployment do not react significantly but inflation itself stays slightly

higher than in the baseline scenario for some quarters, leading to a reaction of

the Central Bank, which increases interest rates. This increase is significant

in the short-run for about seven quarters. Due to these adjustments, inflation

is dampened again and does not react significantly in the long-run.

Next a positive, one standard deviation shock to the Austrian interest

rate is considered and its impact on the other variables is assessed. Fig-

ure 14 reveals the dynamics created by this shock. The interest rate itself

stays significantly higher than in the baseline scenario for about eight quar-

ters and output stays significantly lower for about 25 quarters. Prices and

unemployment do not react significantly, although point estimates suggest

that inflation keeps slightly lower for about six quarters. Afterwards inflation

increases, which could be interpreted as an effect due to the FIP: Since the

real interest rate is constant in the steady state and the nominal interest rate

increases, inflation has to adjust such that the FIP holds in the long-run. Ac-

cording to the point estimates, output decreases and unemployment increases

for the whole time range of 40 quarters. This behavior has a standard eco-

nomic interpretation, since increases in interest rates are considered to slow

down economic growth in the short-run, which in turn raises unemployment.
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Figure 13: Generalized Impulse Responses to One Standard Deviation Shock
to Austrian Inflation

The next innovation to be investigated is one to Austrian unemployment

whose effects are shown in figure 15. In response to this shock unemployment
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Figure 14: Generalized Impulse Responses to a One Standard Deviation
Shock to the Austrian Interest Rate

remains significantly higher than in the baseline scenario. This finding relies

on the results of the unit root tests, which suggested treating unemployment
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rates in both economies as I(1) and has an interesting economic interpreta-

tion, referred to as the phenomenon of hysteresis (see for example Blanchard

(1991), Heijdra and van der Ploeg (2002)). This phenomenon describes sit-

uations where unemployment is very persistent, such that positive shocks

to the unemployment rate have long-lasting effects. In particular, European

economies are considered to suffer from this problem. Inflation does not re-

act significantly, although according to the point estimate there is a slight

tendency for it to decrease in the long-run. Therefore the central bank has

scope for acting against the increase in unemployment by decreasing interest

rates. According to the figure it does so in the short-run, such that output is

negatively effected only for 1 quarter and does not react significantly in the

long-run.

Finally, the impacts of a shock to Austrian output are shown in figure 16.

This shock has the effect that output stays significantly higher for about 25

quarters. As a consequence unemployment decreases and stays significantly

lower for six quarters. However, in the long-run there is no significant effect

of the positive output shock on unemployment. In order to prevent the econ-

omy from overheating and to suppress inflationary tendencies, the central

bank increases the interest rate significantly for a time period of 11 quarters.

Because of this behavior, inflation does not react significantly. Furthermore,

it is worth mentioning that the response of output itself does not indicate

the presence of a multiplier effect, i.e. output does not increase by more than

the initial shock in the short-run. The data rather supports the hypothesis

that deviations of actual output from potential output are very short lived.

Besides the efforts of the central bank to prevent the economy from over-

heating, another possible explanation for the absence of a multiplier effect in

Austria could be that the economy exhibits a high degree of openness, such

that additional income is largely spent on imported goods (see Blanchard

(2003)).

To summarize, the main findings of this section are that, firstly the labor

market in Austria suffers from hysteresis, i.e. temporary shocks have long-

lasting impacts; secondly, there is no multiplier effect with respect to output

shocks, meaning that deviations from the long-run trend are short lived; and
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Figure 15: Generalized Impulse Responses to a One Standard Deviation
Shock to Austrian Unemployment

thirdly, central banks did not only address inflation during the investigated

time period but also output stabilization. All in all these analyses show that
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Figure 16: Generalized Impulse Responses to a One Standard Deviation
Shock to Austrian Output

the model is able to create plausible responses of endogenous variables to

different shocks in the domestic economy. From this point of view one could
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expect to gain valuable insights into the transmission mechanisms from the

German to the Austrian economy by shocking foreign variables and using the

same method as before to track the responses of domestic variables.

7.2 Effects of Foreign Shocks on Austrian Variables

In this section the SVECM is used for analyzing the extent to which shocks to

German variables influence Austrian inflation, Austrian interest rates, Aus-

trian unemployment and Austrian output growth. For the sake of compara-

bility, shocks to inflation rates and interest rates as well as their respective

responses are standardized to represent one percentage point innovations. In

contrast, shocks to unemployment and output as well as their responses, are

measured in percent deviations from the baseline scenario.

At first, a one percentage point shock to the German interest rate is

considered and its effects are depicted in figure 17. This shock does not have

significant effects on Austrian output and inflation, but in the short-run

the Austrian interest rate increases significantly, which could be due to the

IRP, although this relation is not modeled explicitly for reasons explained

in section 6.2. Austrian unemployment does not react significantly in the

short run, but starts to rise after about four quarters. On the one hand this

is caused by lagged effects of the increased domestic interest rate, on the

other hand the LMC ensures that rising unemployment in Germany leads to

higher unemployment in Austria as well, since some of the newly unemployed

seek jobs in Austria. On average Austrian unemployment increases by 6.65

percent in this scenario. It is interesting to see that these effects are long-

lasting which again supports the theory of hysteresis.

The next scenario to be investigated is a one percent shock to German

unemployment with the results shown in figure 18. The effects of this shock

again have straightforward interpretations. As unemployment in Germany

increases, demand for foreign goods decreases, which lowers Austrian ex-

ports and hence Austrian output. This in turn leads to increased Austrian

unemployment. Furthermore, Germans who become unemployed will move

to Austria, which further increases unemployment there. One can see that
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Figure 17: Generalized Impulse Responses to a One Percentage Point Shock
to German Interest Rates

the average increase in Austrian unemployment is higher in percentage terms

than the increase in Germany - a one percent increase in German unemploy-
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Figure 18: Generalized Impulse Responses to a One Percent Shock to German
Unemployment

ment leads to an increase in Austrian unemployment of about 1.6 percent in

the long-run. This effect can be explained by the relative sizes of the labor

62



forces in both countries. Since the absolute number of unemployed in Ger-

many is very large compared to those in Austria, an inflow of some of the

newly unemployed Germans has serious effects on Austrian unemployment in

percentage terms. As another consequence of the aforementioned dynamics,

inflationary pressure declines, leaving latitude for the central bank to de-

crease interest rates. All in all, inflation drops on average by 0.15 percentage

points in the long-run. In the short-run the central bank therefore decreases

the interest rate, in this case by about 0.18 percentage points, but in the

long-run the FIP prevents the interest rate from decreasing too much. As a

consequence, the interest rate decreases by the same amount as inflation in

the long-run.

In the last scenario, a positive one percent shock to German output oc-

curs. Figure 19 reveals that the positive significant spillovers to Austrian

output only last for a very short time period. Due to the temporary boom

in Germany, demand for Austrian goods rises such that output in Austria

stays significantly higher for seven quarters, and unemployment stays signif-

icantly lower for five quarters. The interest rate increases significantly for

about ten quarters, which in turn prevents the inflation rate from increasing

significantly.

To summarize the most important insights gained in this section, shocks

to German interest rates and unemployment have quite large influences on

Austrian unemployment. This is due to the labor mobility in the model:

The Austrian labor market comes under pressure from two distinct sides

in the event of a German economic slowdown. Firstly, Austrian exports

to Germany drop and secondly, unemployed Germans migrate to Austria.

Both phenomena seriously increase Austrian unemployment. In addition to

these dynamics, the properties of the labor markets mean that exogenous

shocks lead to long lasting effects, which is commonly referred to as the

phenomenon of hysteresis. Together these facts explain why the Austrian

labor market is affected to this extent. In contrast to shocks affecting the

German interest rate and unemployment, positive shocks to German output

have only transient effects on Austrian variables, which is partly due to the

absence of multiplier effects, as mentioned above. However, in the short-run,
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Figure 19: Generalized Impulse Responses to a One Percent Shock to German
Output

the Austrian interest rate increases significantly and unemployment decreases

significantly, which is reasonable according to standard economic arguments.
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7.3 Effects of Domestic Shocks on German Variables

The model also allows for investigating the effects on the German economy

of shocks felt by Austrian variables. Since the German economy is far larger

than the Austrian economy, this case is less interesting. To save space, only

the most important issues will be stated here3. Again, shocks to inflation

rates and interest rates and their responses were standardized to represent

one percentage point innovations, whereas shocks to unemployment and out-

put and their responses were measured in percent deviations from the baseline

scenario. Since the vector of endogenous variables did not include German

inflation, the responses to Austrian shocks can only be traced for interest

rates, unemployment and output.

If Austrian inflation is shocked, German interest rates, German unem-

ployment and German output do not react significantly. The same holds

true for shocks to Austrian interest rates. Shocks to Austrian unemployment

do not have significant effects on German interest rates or German output,

but an increase in Austrian unemployment is likely to increase German un-

employment as well, although not to the same extent as the corresponding

German shock increases Austrian unemployment. The effect of Austrian un-

employment on German unemployment is mainly due to the LMC which

states that some newly unemployed Austrians will try to find work in Ger-

many.

The most interesting case, depicted in figure 20, is the response of German

interest rates, German unemployment and German output to a temporarily

boost in Austrian output. It can be seen that German variables do not react

as much to a shock of Austrian output as in the reverse case but in the

short-run German interest rates rise significantly, German unemployment

decreases significantly and German output increases significantly. Again,

these responses can be explained by standard economic arguments but there

is one important difference between the response of German output to a

positive Austrian output shock and the response of Austrian output to a

positive German output shock: In the former case the presence of a multiplier

3The other calculations are available from the author upon request.
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Figure 20: Generalized Impulse Responses of German Variables to a One
Percent Shock to Austrian Output

effect is clearly indicated by the third picture in figure 20. German output

reacts to an Austrian shock immediately, yet the dynamics are reinforced in

the subsequent quarters. This could be explained by the fact that in Germany

imports are a lower percentage of GDP than in Austria and thus the degree of

openness is lower for the German economy. Consequently, additional income

is largely spent on domestic goods and the standard multiplier effect sets in
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(see for example Blanchard (2003)).

To summarize, shocks that hit Austrian variables barely have any signif-

icant effects on the German economy, with some exceptions: Output shocks

are able to significantly affect German variables at least in the short-run and

due to the LMC, labor market shocks tend to transmit to Germany as well.

However, these effects are comparatively small.

67



8 Forecasting Austrian Economic

Performance

8.1 Forecasts Using the Estimated SVECM

In this section the SVECM is used to forecast changes in inflation (DDPAT),

changes in the interest rates (DRAT), changes in unemployment (DUAT)

and absolute values of output growth in Austria (DYAT) (for general is-

sues related to forecasting techniques see for example Chatfield (2000) and

Diebold (2007)). These variables were selected because outcomes can eas-

ily be compared to those of univariate forecasting techniques for stationary

time series. If one is interested in forecasts for inflation, interest rates, un-

employment and output in levels, the forecast growth rates can be used to

recalculate indices and forecasts for the series in original units with the help

of appropriate back-transformations (see Appendix A).

To perform the forecasts, the SVECM is transformed into a model ob-

ject in Eviews 6 (2007). Afterwards the model is solved numerically in a

deterministic dynamic manner, using 5000 iterations and the Gauss-Seidel

algorithm (see Eviews 6 (2007) User’s Guide). The forecast evaluation period

starts in the first quarter of the year 2000 and ends in the second quarter of

2007. In the beginning, the model is estimated using information until the

fourth quarter of 1999. Forecasts for the first quarter of 2000 are computed

with this model. In the next step, the model is estimated using information

up to the first quarter of 2000 and forecasts are obtained for the second quar-

ter of 2000. Analogously, one step ahead forecasts are then obtained for each

quarter in the forecast evaluation period.

Figure 21 reveals that the model predicts changes in inflation quite well,

whereas output growth is overestimated between 2001 and 2003 and conse-

quently unemployment growth is underestimated during this period. The

reason is that the model may not accurately cover some of the factors that

explained the recession between 2001 and 2003. Similar results are reported

for the forecasting models of the Austrian Central Bank (OeNB), the In-

stitute of Advanced Studies (IHS) and the Austrian Institute of Economic
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Figure 21: One Step Ahead Forecasts of the SVECM (Dashed Line) and
Actual Values (Solid Line)

Research (WIFO) in Ragacs and Schneider (2007). In general, the SVECM

seems to perform better at the end of the forecast horizon, during the phase
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of economic recovery.

The question arises whether the SVECM is able to compete with other

models regarding the predictive power. If this is the case and none of the

other considered forecasting models encompasses the SVECM, it can con-

tribute to a combined forecast, which has higher predictive power than each

of the individual forecasts. In the next sections standard forecasting tech-

niques are used to obtain one step ahead predictions over the same time

horizon as for the SVECM. Afterwards the results of the various forecasts

will be compared with the help of several criteria assessing the predictive

power of forecasting techniques.

8.2 Forecasts Using Univariate ARMA Models

Univariate time series models are widely used in forecasting, since they are

barely outperformed by multivariate models. Similar to Garratt et al. (2006)

various ARMA-models (see Brockwell and Davis (1996) for a general de-

scription of this model class) are estimated for DDPAT, DRAT, DUAT and

DYAT over the whole sample period. The highest lag order to be allowed

for is four in the autoregressive and in the moving average part. Hence there

are 25 possible combinations of autoregressive and moving average terms,

excluding subset models. These 25 models are compared to each other via

the AIC and the best model is chosen for forecasting purposes. In the case of

DDPAT, an ARMA(3,4) performed best, in the case of DRAT and DUAT an

ARMA(4,4) had the lowest AIC, and for DYAT an ARMA(4,3) had the best

fit. In the next step the sample was again split into an estimation period,

ranging from the first quarter of 1970 to the fourth quarter of 1999, and a

forecasting evaluation period, ranging from the first quarter of 2000 to the

second quarter of 2007. Afterwards the same one step ahead forecasts where

made as in the case of the SVECM using the most suitable ARMA model

mentioned above.

Figure 22 indicates that the chosen univariate time series models perform

quite well in predicting patterns of the various series under consideration, al-

though peaks and troughs for changes in inflation are underestimated. In the
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Figure 22: One Step Ahead Forecasts of the Appropriate ARMA Models
(Dashed Line) and Actual Values (Solid Line)

case of changes in the interest rates and changes in unemployment the series

of one step ahead forecasts seem to lag behind real developments. With re-
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spect to output growth, the same problem as in the SVECM-forecast arises,

i.e. the economic slowdown at the beginning of this century is underesti-

mated.

8.3 Forecasts Using Holt-Winters Nonseasonal

Algorithm

The Holt-Winters nonseasonal algorithm (see for example Brockwell and

Davis (1996), Chatfield (2000)) is an ad-hoc procedure which is based on

estimates of local levels and local trends, which are smoothed versions of

past local levels and local trends. The procedure often leads to quite accu-

rate forecasts, especially if the investigated series exhibits seasonal behavior

and the algorithm is augmented with a local seasonal component. Since this

is not the case in the present setting, one cannot expect to get very good

forecasts. Nevertheless, it may be possible that some dynamics are revealed

by this and none of the other procedures. Again one step ahead forecasts

where obtained for the forecast evaluation period between the first quarter

of 2000 and the second quarter of 2007.

As is obvious from figure 23, the algorithm performs poorly in forecast-

ing changes in inflation and output growth. In contrast, changes in interest

rates and unemployment rates are predicted quite accurately, and the fore-

casts are comparable to those of the SVECM and those of univariate ARMA

models. Whether the Holt-Winters forecasts are able to improve the overall

performance via a combined forecast is assessed in section 8.6.

8.4 Forecasts Using Single Exponential Smoothing

In this section, Single Exponential Smoothing (see Brockwell and Davis

(1996)) is applied to calculate the respective one step ahead forecasts for

the forecast evaluation period. The procedure is quite simple and is meant

to produce benchmark forecasts, which more sophisticated models should be

able to outperform. The results are shown in figure 24.

Again the algorithm fails to give accurate forecasts for changes in infla-
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Figure 23: One Step Ahead Forecasts of the Holt-Winters Nonseasonal Al-
gorithm (Dashed Line) and Actual Values (Solid Line)

tion. Regarding changes in interest rates and unemployment, the forecast

series look like a smoothed, delayed version of actual values, which is due to
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Figure 24: One Step Ahead Forecasts of Single Exponential Smoothing
(Dashed Line) and Actual Values (Solid Line)

the properties of the algorithm.
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8.5 Evaluating the Predictive Accuracy of the Differ-

ent Procedures

To compare the forecasts obtained via the different procedures in sections 8.1-

8.4 they have to be assessed according to their predictive accuracy. There are

several indicators used for comparing the forecasting performance of different

models (see for example Chatfield (2000), see also Ragacs and Schneider

(2007)). The criteria used here are the root mean squared error (RMSE), the

mean absolute error (MAE), the mean absolute percentage error (MAPE),

the Theil coefficient (THEIL) and the sign test (SIGN). The first one is

calculated according to the formula:

RMSE =

√√√√ 1

P

P∑
t=1

(yt − ŷt)2 (39)

where P is the number of periods in the forecast evaluation period, yt is the

realized value of the variable to be forecast, and ŷt is the value of the forecast

obtained with the model. Critics argue that the RMSE is very sensitive to

large forecast errors, whereas small errors are given less weight, i.e. a model

that predicts very well over long forecasting horizons and fails badly in one

period could be ranked below a model that regularly produces forecast errors.

Therefore another criterion is also frequently used, the mean absolute error

(MAE):

MAE =
1

P

P∑
t=1

|yt − ŷt| . (40)

Since the errors are not squared in this procedure, less weight is given to

large deviations of forecasts from actual values. To get a measure for pre-

dictive accuracy that does not depend on the scaling of variables, the above

expression can be modified to the mean absolute percentage error (MAPE):

MAPE =
1

P

P∑
t=1

∣∣∣∣∣yt − ŷtyt

∣∣∣∣∣ . (41)
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This measure allows direct comparisons between the predictive power of dif-

ferent models in percentage terms. Another criterion often used is called the

Theil coefficient or Theil’s U:

THEIL =

√
1
P

∑P
t=1 (yt − ŷt)2√

1
P

∑P
t=1 (yt − yt−1)

2
. (42)

This criterion relates the RMSE of the model under consideration to those

of a certain naive forecast. In this version the naive forecast for period

t + 1 is just the actual value of the corresponding variable in period t. If

the investigated model had a high predictive power, this ratio will be small,

otherwise it will be close to 1.

All criteria considered so far evaluated deviations of forecasts from actual

values. However, it may be interesting to know whether a model is able to

predict the correct sign of future variables, i.e. whether an upswing or a

downturn is likely. For this purpose the proportion of correctly predicted

signs is calculated as the success rate:

SIGN =
a+ d

a+ b+ c+ d
(43)

where a stands for the number of correctly predicted negative signs, d for

the number of correctly predicted positive signs, and b + c is the number

of all incorrectly predicted signs. Table 6 shows these criteria for all four

forecasting techniques.

With respect to changes in inflation, the chosen ARMA model exhibits

the lowest values of RMSE, MAE and THEIL. The SVECM on the other

hand is the best model according to SIGN, i.e. best at forecasting upswings

and downturns. The Holt-Winters algorithm performs poorly and exhibits a

value of 1.23 in THEIL, which means that it is worse than the naive forecast.

Single Exponential Smoothing performs surprisingly well, but on average

only 50 percent of the predicted signs were correct, which is the same as the

expected number of randomly predicted correct signs.
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DDPAT RMSE MAE MAPE THEIL SIGN

SVECM 0.0058 0.0047 0.8642 0.4053 0.7667
ARMA 0.0055 0.0045 0.9070 0.3810 0.7333

HW 0.0173 0.0142 2.4371 1.2283 0.3000
SES 0.0088 0.0073 1.0552 0.6234 0.5000

DRAT RMSE MAE MAPE THEIL SIGN

SVECM 0.0027 0.0023 4.6384 1.0483 0.8000
ARMA 0.0023 0.0018 3.4316 0.9134 0.7333

HW 0.0033 0.0021 2.4104 1.0717 0.7333
SES 0.0022 0.0015 1.9797 0.8811 0.7333

DUAT RMSE MAE MAPE THEIL SIGN

SVECM 0.0183 0.0142 3.1519 1.2640 0.8000
ARMA 0.0135 0.0097 1.3733 0.8979 0.8333

HW 0.0134 0.0106 2.0186 0.9195 0.8333
SES 0.0144 0.0108 2.6988 0.9989 0.8000

DYAT RMSE MAE MAPE THEIL SIGN

SVECM 0.0119 0.0089 2.0711 0.6755 0.7667
ARMA 0.0107 0.0078 2.0726 0.6037 0.6000

HW 0.0206 0.0094 4.2262 1.1036 0.5333
SES 0.0124 0.0094 4.2262 0.7024 0.6333

Table 6: Criteria for Assessing the Predictive Accuracy

Regarding the interest rate, Single Exponential Smoothing is the best

algorithm according to RMSE, MAE, MAPE and THEIL, but the SVECM

is better in predicting whether changes in the interest rate are positive or

negative. With respect to THEIL, all models exhibit values between 0.88

and 1.08, which indicates that forecasting changes in the interest rate is very

difficult and more sophisticated models do not necessarily lead to better
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results than naive ones do.

In the case of changes in unemployment, the SVECM performs poorly and

exhibits a value of 1.26 in THEIL. With respect to MAE, MAPE and THEIL,

the ARMA model performs best, but according to the RMSE the Holt-

Winters algorithm has a slightly lower value. Single Exponential Smoothing

does not lead to good forecasts in this case.

Finally, the SVECM and the ARMA model perform best in forecasting

output growth. The ARMA model is slightly better according to RMSE,

MAE and THEIL, whereas the SVECM is able to predict upswings and

downturns more accurately.

To summarize, ARMA models performed very well with respect to all

variables considered here. The SVECM leads to good forecasts with respect

to changes in inflation and output growth and is the model which performs

best in predicting signs of changes, i.e. upswings and downturns in all series

except Austrian unemployment. The Holt-Winters algorithm does not per-

form very well on average, but with respect to changes in unemployment it is

the best model according to the RMSE. Single Exponential Smoothing leads

to surprisingly accurate forecasts in some cases and with respect to changes

in interest rates it is the best model according to all criteria except SIGN.

To evaluate the overall performance of all four models, we rank them in

the following way: The model with highest predictive power according to

the relevant criterion is given three points, the model with the second high-

est predictive power is given two points and so on. If two models cannot

be distinguished by a certain criterion they are given the same number of

points. Afterwards the points are summed for each model and each crite-

rion separately over the four variables to be forecast. The model with the

highest score is ranked as the “best” model according to the criterion under

consideration.
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OVERALL RMSE MAE MAPE THEIL SIGN

SVECM 5 4 9 4 10
ARMA 10 11 8 11 8

HW 3 4 5 3 5
SES 6 6 6 6 6

Table 7: Scores of the Different Models Regarding their Predictive Accuracy

Table 7 contains the scores of each model with respect to the relevant

criterion. Altogether ARMA models are ranked as “best” models accord-

ing to RMSE, MAE and THEIL, whereas the SVECM is chosen by MAPE

and SIGN. Consequently, it can be expected that ARMA predicts specific

values most accurately, whereas the SVECM better identifies upswings and

downturns.

8.6 Forecast Encompassing

Following Diebold (2007), forecast encompassing tests can be used to as-

sess whether all relevant information is already contained in a subset of the

available forecasts. To perform this test, the following OLS-regression is

implemented:

yt+P = β1ŷ
arma
t+P + β2ŷ

vec
t+P + β3ŷ

hw
t+P + β4ŷ

ses
t+P + εt+P . (44)

The dependent variable yt+P contains the realizations of the variable under

consideration in period t+P , the explanatory variables ŷarmat+P , ŷvect+P , ŷ
hw
t+P and

ŷsest+P contain the forecast series according to the model mentioned in the su-

perscript, and εt+P is the error term. As long as none of the coefficients βi are

significantly different from zero, all models contain relevant information. If

there are significant and insignificant parameters, the forecasting procedures

with significant parameter estimates already incorporate all relevant infor-

mation and therefore they encompass the other models whose coefficients are
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insignificant. Parameter estimates of models which perform well according to

their predictive accuracy should be high as compared to less accurate models.

Altogether the sum of parameter estimates on equation (44) should be close

to one.

DDPAT COEFFICIENT P-VALUE

ARMA 0.7727 0.0100
VEC 0.7620 0.0155
HW 0.1051 0.5925
SES -0.1953 0.5340

DRAT COEFFICIENT P-VALUE

ARMA 0.3565 0.0763
VEC 0.1925 0.2373
HW 0.1040 0.4245
SES 0.2415 0.3685

DUAT COEFFICIENT P-VALUE

ARMA 0.4081 0.1070
VEC 0.1802 0.2372
HW 0.5353 0.0133
SES -0.1599 0.5259

DYAT COEFFICIENT P-VALUE

ARMA 0.3179 0.3154
VEC 0.2347 0.3364
HW -0.0706 0.6694
SES -0.2219 0.5554

Table 8: Forecast Encompassing Regressions

Table 8 reveals that with respect to changes in inflation, ARMA and

SVECM together incorporate all relevant information, and so it is likely
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that Holt-Winters and Single Exponential Smoothing algorithms will not

contribute to more accurate forecasts. Consequently, the SVECM and the

corresponding ARMA model are used in a forecast combination. In the case

of changes in the interest rate, none of the models is able to outperform

the others at the 5 percent significance level. However, at the 10 percent

significance level all the relevant information would be incorporated in the

ARMA model. Therefore we chose to include all four procedures to perform

the combined forecast. The Holt-Winters algorithm is able to outperform all

other algorithms with respect to changes in unemployment, so the “combined

forecast” includes only one procedure in this case. Finally, none of the models

contains all relevant information when it comes to forecasting output growth,

so all procedures are included in the combined framework. Note that the sum

of all parameter estimates is not close to one in case of DYAT due to the fact

that none of the models contains all the relevant information.

8.7 Forecast Combination

The next step is to compute optimal weights for the procedures that are

considered as useful in a combined forecast. Therefore the sample is split

into three parts4. The first part refers to the estimation sample, ranging

from the first quarter in 1970 to the fourth quarter in 1999. This part is used

to estimate the coefficients of the models as in section 8.6. The second part is

a training sample, which is used to compute the optimal weights for forecast

combination. This training sample ranges from the first quarter of 2000 to the

fourth quarter of 2005. Finally, the third part is the new evaluation sample,

which is used to assess the predictive accuracy of the combined forecast and

ranges from the first quarter of 2006 to the second quarter of 2007.

If there is no significant parameter in the forecast encompassing regres-

sion, all models are contained as regressors to estimate the following equation:

4A combined forecast for the whole forecast evaluation period is available from the
author upon request. Note however, that a comparison between the combined forecast
for the whole evaluation period and the individual forecasts is not accurate, since the
evaluation period is also used to assess the corresponding weights. This leads to an unfair
advantage for the combined forecast.
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yt+P = β0 + β1ŷ
arma
t+P + β2ŷ

vec
t+P + β3ŷ

hw
t+P + β4ŷ

ses
t+P + εt+P . (45)

Otherwise only models which had a significant parameter estimate in the

encompassing regression are included in the right hand side. Note that in

contrast to the forecast encompassing regression there is a constant term

in equation (45). This solves problems relating to the combination of bi-

ased forecasts, since the constant is able to eliminate the average bias (see

Diebold (2007)). The coefficients of the estimated OLS-regression are dis-

played in table 15 in Appendix F and are used as weights in summing up

the corresponding one step ahead forecasted series to an aggregate combined

forecast. This combined forecast is shown in figure 25 for the new evaluation

sample.

According to this figure, the combined forecast seems to perform well in

predicting changes in inflation and changes in unemployment. In contrast,

changes in the interest rate are underestimated, as it is the case with per

capita output growth. To assess whether the combined forecast performs

better than the individual forecasts, the proposed criteria for evaluating the

predictive power are computed for the new evaluation sample. Table 9 shows

the results of this exercise, where COMB refers to the combined forecast.

Comparing the values in table 9 reveals that with respect to changes in

inflation the combined forecast is better than the four individual procedures

according to all criteria but MAPE. This means that the ARMA(3,4) model

was able to explain other important aspects in the underlying data series than

the SVECM. Therefore forecast combination clearly improves the predictive

performance and is highly recommended in this case.

With respect to changes in the interest rate, the combined forecast is able

to outperform the SVECM and the corresponding ARMA model according to

all criteria. Surprisingly, in the new evaluation sample, HW and SES are able

to forecast changes in the interest rate very well and the combined forecast

does not lead to substantial improvements. Nevertheless, it is able to compete

with these models, so that forecast combination can be recommended in this
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Figure 25: Combined Forecast According to the Estimated Weights (Dashed
Line) and Actual Values (Solid Line)

case as well. In contrast to changes in inflation, all four models were used to

construct the combined aggregate in this case. Hence, all models contained
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DDPAT RMSE MAE MAPE THEIL SIGN

COMB 0.0038 0.0034 0.7065 0.2114 0.8333
SVECM 0.0050 0.0045 0.7775 0.2801 0.8333
ARMA 0.0046 0.0037 0.5130 0.2535 0.8333

HW 0.0237 0.0207 2.2282 1.3198 0.1667
SES 0.0101 0.0079 0.7315 0.5627 0.6667

DRAT RMSE MAE MAPE THEIL SIGN

COMB 0.0013 0.0011 0.3957 1.2559 1.0000
SVECM 0.0020 0.0018 0.7766 1.9446 0.8333
ARMA 0.0021 0.0016 0.6377 2.1291 0.6667

HW 0.0013 0.0009 0.4716 1.2449 1.0000
SES 0.0009 0.0007 0.3455 0.8647 1.0000

DUAT RMSE MAE MAPE THEIL SIGN

COMB 0.0119 0.0098 3.8773 0.7981 0.8333
SVECM 0.0133 0.0096 7.1291 0.8972 1.0000
ARMA 0.0157 0.0111 1.6726 1.0569 0.8333

HW 0.0142 0.0138 5.9733 0.9569 0.8333
SES 0.0147 0.0105 8.4485 0.9881 0.8333

DYAT RMSE MAE MAPE THEIL SIGN

COMB 0.0069 0.0058 5.6183 0.5142 0.8333
SVECM 0.0073 0.0059 4.1746 0.5439 0.8333
ARMA 0.0732 0.0012 2.3692 0.1072 0.8333

HW 0.0129 0.0107 26.6409 0.9624 0.5000
SES 0.0105 0.0075 15.0980 0.7832 0.8333

Table 9: Predictive Accuracy of the Combined Forecasts

relevant information which was not encompassed by other models.

The “combined” forecast regarding changes in unemployment only uses

the result of the Holt-Winters nonseasonal algorithm as information. It is not
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surprising that this “combined” forecast has the lowest RMSE value, since

the OLS-regression is designed to minimize this criterion throughout the

training sample. Regarding the other criteria, the combined forecast is able

to compete successfully with the individual forecasts. It is worth mentioning

that the “combined” forecast is less appropriate than the SVECM according

to MAE and the SIGN-criterion and it is less appropriate than ARMA models

according to MAPE.

Regarding forecasts of output growth rates, the combined procedure is

again selected as the most appropriate model by RMSE and SIGN. It also

exhibits desirable values in MAE, MAPE and THEIL. Therefore a combina-

tion of all four models seems to be a good choice. However, ARMA models

perform better according to MAE, MAPE and THEIL.

A similar procedure as in case of individual forecasts is used to assess the

overall predictive power of the five models. In particular, the model which

performs best is given 4 points, the second best model is given 3 points and

so on. Again, models which perform equally well are given the same number

of points. The resulting scores are depicted in table 10.

OVERALL RMSE MAE MAPE THEIL SIGN

COMB 15 12 11 13 15
SVECM 9 8 5 8 13
ARMA 3 9 13 7 11

HW 6 3 4 5 7
SES 9 8 7 7 12

Table 10: Scores of the Models for Predictive Accuracy in the New Evaluation
Period

This table reveals that the combined forecast is able to outperform all

individual forecasts according to all criteria but one. Only in case of MAPE

do corresponding ARMA models perform better than the combined forecast.

To summarize, combining the various forecasts according to the weights

resulting from estimation of equation (45) is a good choice. In the case of all
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four variables this leads to accurate forecasts and sometimes even to substan-

tial improvements in the forecasting performance as compared to individual

models. In addition, the overall predictive power of the combined forecast

is very high, which can be seen in table 10. It is worth mentioning that

with respect to three of the four variables the SVECM-forecast contains use-

ful information and therefore contributes to improving the overall predictive

power.

An interesting exercise would be to compare the performance of the

SVECM or the combined forecast to the performance of the large-scale mod-

els used by IHS, OeNB and WIFO. However, there are two major problems

in doing so. First of all, only the model of the OeNB is used to forecast

quarterly figures and is thus comparable to the model outlined in this thesis

(see Fenz and Spitzer (2004)). Secondly, when the forecasts of IHS, OeNB

and WIFO were performed, they only had access to rough estimates of the

underlying data series during the most recent time points in the estimation

period. These data series were subject to revisions later on, so that the data

used in this thesis is more reliable. Therefore a comparison of the models

could be misleading.
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9 Conclusions

In this thesis the framework of a Structural Vector Error Correction Model

(SVECM) was used to study interrelationships and transmission mechanisms

of shocks between Austria and Germany. In the first step, theoretically moti-

vated potential relations between the variables were derived using a dynamic

open economy model. Due to the available data series, the results of utility

maximization by individuals, considerations with respect to the production

side of the model, and considerations regarding migration decisions, we chose

the Fisher Inflation Parity, the Interest Rate Parity, the Purchasing Power

Parity, the Output Gap relation and the Labor Market Condition to repre-

sent possible restrictions to be imposed on the parameters of the cointegrating

vectors.

In the next steps, the optimal lag-length and the associated number of

cointegrating vectors among endogenous variables were assessed. It turned

out that two cointegrating relations are supported by the data, which con-

trasted to the fact that five potential relations were suggested by economic

theory. According to model selection criteria and the desired properties of

the residuals from estimation of cointegrating equations, the Fisher Inflation

Parity and the Labor Market Condition were chosen for the final specifica-

tion. Tests on the validity of these theoretical long-run relationships did not

go against this choice. Consequently, these two equations were implemented,

the resulting model was estimated and several specification tests were per-

formed. Since the results of these tests were satisfactory, the model was used

to study the effects and the transmission channels to Austrian variables of

shocks to the German economy.

The results were in line with standard economic findings and allowed a

straightforward interpretation. The main finding was that reactions of the

Austrian interest rate and Austrian output exhibit a transient behavior in

response to shocks hitting the German economy, whereas responses of Aus-

trian unemployment rates were long-lasting. This phenomenon is commonly

referred to as hysteresis. Another important result was the absence of a

multiplier effect in the Austrian economy. This could be firstly because devi-
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ations from the long-run trend are very short lived in Austria and therefore

variables tend to return to their steady state equilibrium growth rates rather

quickly, and secondly that Austria represents an open economy, so that ad-

ditional income is also spent on foreign goods, which reduces the multiplier

effect according to standard economic theory (see for example Blanchard

(2003)).

Shocks to the Austrian economy and their effects on Germany were also

considered. As expected, most of these shocks did not have significant influ-

ence on the German economy. A noteworthy exception were shocks to Aus-

trian output. However, in terms of their magnitude, these Austrian output

shocks had less severe effects on the German economy than in the converse

case. An interesting point was that for Germany the multiplier effect is sup-

ported by the data. This could be due to the fact that Germany is less open

as compared to Austria and therefore output shocks have a higher effect on

domestic consumption.

In the last section, the forecasting properties of the estimated SVECM

were investigated. It turned out that it was able to outperform some of

the simpler procedures and at least to compete with univariate time series

models. The model significantly contributed in improving forecasts with

respect to changes in inflation, changes in the interest rate and output growth

in a combined procedure.

These combined forecasts constitute an optimal framework to further im-

prove the predictive power of macroeconometric models nowadays in use. For

instance, the results of the SVECM could be combined with results coming

from large-scale models, DSGE-models or judgments of experts regarding

future economic development. Institutions engaged in economic forecasting

are recommended to apply the procedure described.

Similar models like the one used in this thesis could be implemented for

example to analyze Canada and the United States, Mexico and the United

States or Portugal and Spain. It could be useful to compare these models

and the one described here with respect to the robustness of results as well

as with respect to differences in the underlying transmission channels. Doing

so would reveal weaknesses of some models and it could prove useful to find
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out more about other explanatory variables to be included in the vector zt.

For instance, the exchange rate could play an important role in determining

trade flows between some of the aforementioned regions. In the case of a

model for Mexico, foreign direct investment from the United States could be

a more promising variable than unemployment in the United States, since

there is no incentive for United States citizens to work in Mexico, where

wages are far lower. Altogether these considerations indicate that there is

scope for applying similar models in future research.
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A Data

The decision which time series to include as endogenous and exogenous vari-

ables involves the crucial tradeoff between working with a small model, where

parameters can be estimated meaningfully but with the risk of a serious omit-

ted variable bias, and the use of a large model, where the number of observa-

tions may be too small to estimate all parameters accurately. Therefore only

variables with high explanatory power should be included. Consequently,

we use one exogenous and eight endogenous variables, which are described

below.

The data series were made available by the Austrian Institute of Economic

Research (WIFO) and were originally obtained from the OECD Economic

Outlook and Main Economic Indicators databases. Since there were prob-

lems with respect to structural changes in the available series of Austrian

Gross Domestic Product, the relevant data of the International Financial

Statistics database from the International Monetary Fund was used to con-

struct growth rates of the appropriate variable for each quarter in the sample

period. Afterwards the series was reconstructed in levels using the obtained

growth rates together with the value of Austrian Gross Domestic Product in

the first quarter of 1970 according to the original OECD database. In the

estimation procedure and the associated tests, the following variables with

the respective transformations were used:

• PD: Price Differential between Austria and Germany calculated as

PAT − PGER (see below)

• PAT: log of the Austrian Consumer Price Index (base: first quarter of

2000)

• PGER: log of the German Consumer Price Index (base: first quarter

of 2000)

• POIL: log of the crude import price of oil in US Dollar

• RAT: Austrian interest rates constructed as log(1 + i), where i is the

nominal interest rate divided by 100
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• RGER: German interest rates constructed as log(1 + i), where i is the

nominal interest rate divided by 100

• UAT: log of the Austrian unemployment rate index (base: first quarter

of 2000)

• UGER: log of the German unemployment rate index (base: first quarter

of 2000)

• YAT: log of the Austrian per capita gross domestic product index (base:

first quarter of 2000)

• YGER: log of the German per capita Gross Domestic Product index

(base: first quarter of 2000)

All variables were observed on a quarterly basis starting with the first

quarter of 1970 and ending with the second quarter of 2007. Seasonal ad-

justment was carried out for all price variables and for unemployment rates

using the Tramo-Seats procedure implemented in Eviews 6 (2007). To calcu-

late per capita variables, Austrian and German population sizes, observed on

a yearly basis, were interpolated to obtain quarterly variables. This was done

using the method described by Boot et al. (1967)), which is implemented in

Ecotrim.

In addition, the Austrian Consumer Price Index had to be adjusted for

outliers in the first quarter of 1984 and in the first quarter of 1990 due to

increases in the rates of consumption taxes. The quarterly inflation rate

obtained was replaced by the average of the inflation rate in that quarter

during the preceding four years.
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B Derivation of the Restrictions

B.1 Fisher Inflation Parity and Interest Rate Parity

The Lagrangian for the representative household’s optimization problem can

be expressed as:

L =
∞∑
t=0

ρt{Cα
t C
∗1−α
t + λt[(1 + rt)Kt−1 + wtLt +

(1 + it)

(1 + πt)
Bt−1 +

+
(1 + i∗t )

(1 + π∗t )
B∗t−1 +

Mt−1

1 + πt
− Ct − P ∗t C∗t −Bt −B∗t −Kt −Mt]

+µt[
Mt−1

1 + πt
− Ct − P ∗t C∗t ]} (46)

where λt is the Lagrange multiplier for the budget constraint and µt rep-

resents the Lagrange multiplier for the cash-in-advance constraint. Three

necessary first order conditions for an optimum can be obtained by taking

the derivative of the Lagrangian with respect to the control variables Ct, C
∗
t

and Mt and equalizing these derivatives to zero. Other three necessary first

order conditions can be obtained by taking the derivative of the Lagrangian

with respect to the state variables Kt, Bt and B∗t and setting them to zero

as well. Altogether this leads to six first order conditions reading:

∂L

∂Ct

!
= 0 ⇒ ρt[αCα−1

t C∗1−αt − λt − µt] = 0 (47)

∂L

∂C∗t

!
= 0 ⇒ ρt[Cα

t (1− α)C
∗(−α)
t − λtP ∗t − µtP ∗t ] = 0 (48)

∂L

∂Mt

!
= 0 ⇒ ρt+1

[
λt+1

1 + πt+1

+
µt+1

1 + πt+1

]
− ρtλt = 0 (49)

∂L

∂Kt

!
= 0 ⇒ ρt+1λt+1(1 + rt+1)− ρtλt = 0 (50)

∂L

∂Bt

!
= 0 ⇒ ρt+1λt+1

(1 + it+1)

(1 + πt+1)
− ρtλt = 0 (51)
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∂L

∂B∗t

!
= 0 ⇒ ρt+1λt+1

(1 + i∗t+1)

(1 + π∗t+1)
− ρtλt = 0 (52)

Equations (50) and (51) together lead to:

(1 + rt) =
1 + it
1 + πt

(53)

which is the Fisher Inflation Parity (FIP) and equations (51) and (52) to-

gether lead to:

1 + it
1 + πt

=
1 + i∗t
1 + π∗t

(54)

which is the Interest Rate Parity (IRP) in the absence of an exchange rate.

B.2 Purchasing Power Parity

The first order conditions for consumption lead to:

Ct =
α

1− α
P ∗t C

∗
t (55)

Plugging the related expressions for Ct and C∗t into the budget constraint

and using the following definitions:

St = St(rt, it, i
∗
t , πt, π

∗
t )

= Bt +B∗t +Mt +Kt (56)

It = It(rt, it, i
∗
t , πt, π

∗
t )

= wtLt + (1 + rt)Kt−1 +
Mt−1

1 + πt
+ (1 + it)

Bt−1

1 + πt
+ (1 + i∗t )

B∗t−1

1 + π∗t
(57)
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where St denotes a household’s savings and It denotes the household’s in-

come, yields the familiar results for demand:

Ct = α(It − St) (58)

C∗t = (1− α)
It − St
P ∗t

(59)

which are consequences of the assumed Cobb-Douglas utility functions. These

equations imply that a fraction α of the household’s income net of savings

is spent on the domestic aggregate, whereas a fraction 1− α is spent on the

foreign aggregate. Since preferences in both economies are identical, similar

expressions hold for demand in the foreign economy. As a consequence, the

consumer price index in both countries is a weighted average of the price lev-

els for the goods produced at home and abroad, with α and 1−α representing

the weights. Therefore

CPIt = CPI∗t = α + (1− α)P ∗t

holds, where CPIt and CPI∗t denote the consumer price indices in the do-

mestic and foreign economy, and consequently

CPIt
CPI∗t

= 1 (60)

has to fulfilled. This equation is the PPP in the absence of an exchange rate.
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C Unit Root Tests

In this section the outputs of the unit root tests are described. Table 11

contains the critical values of the Kwiatkowski-Phillips-Schmidt and Shin

test, and table 12 the associated test statistics. Table 13 displays the p-values

of the augmented Dickey-Fuller test, and table 14 those of the Phillips-Perron

test. The null hypothesis of the ADF-test and the PP-test is equivalent to

the assumption that the respective series is nonstationary, whereas the null

hypothesis of the KPSS-test is equivalent to the assumption that the series

under consideration is stationary (see for example Pfaff (2006)).

In the case of price levels, the price differential, oil prices, unemployment

and output levels, the correct specification of the test regression is the one

including a trend, whereas in the case of interest rates the trend has to be

omitted. Three asterisks indicate that the null hypothesis is rejected at the

one percent significance level, two asterisks that it is rejected at the five per-

cent significance level and one asterisk indicates that it is rejected at the ten

percent significance level.

const const+trend
α-level critical value α-level critical value

0.01 0.7390 0.01 0.2160
0.05 0.4630 0.05 0.1460
0.10 0.3470 0.10 0.1190

Table 11: Critical Values of the Kwiatkowski-Phillips-Schmidt-Shin Test
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Kwiatkowski-Phillips-Schmidt-Shin Test
const const+trend

UAT 0.6305 ** UAT 0.3054 ***
UGER 1.2484 *** UGER 0.2798 ***

PD 0.9298 *** PD 0.3186 ***
PAT 1.3810 *** PAT 0.3464 ***
POIL 0.7568 *** POIL 0.2057 **
PGER 1.4151 *** PGER 0.3158 ***
RAT 0.6305 ** RAT 0.1802 **

RGER 0.7022 ** RGER 0.0731
YAT 1.4625 *** YAT 0.2235 ***

YGER 1.4628 *** YGER 0.2289 ***

DUAT 0.0442 DUAT 0.0942
DUGER 0.4061 * DUGER 0.0424

DPD 0.6012 ** DPD 0.1168
DPAT 1.0504 *** DPAT 0.1301 *
DPOIL 0.1884 DPOIL 0.1319 *
DPGER 0.8434 *** DPGER 0.0767
DRAT 0.0442 DRAT 0.0333

DRGER 0.0314 DRGER 0.0297
DYAT 0.5107 ** DYAT 0.1020

DYGER 0.2080 DYGER 0.0384

DDUAT 0.0761 DDUAT 0.0549
DDUGER 0.1609 DDUGER 0.0708

DDPD 0.0889 DDPD 0.0884
DDPAT 0.1718 DDPAT 0.1529 **
DDPOIL 0.0252 DDPOIL 0.0254
DDPGER 0.1194 DDPGER 0.1146
DDRAT 0.0761 DDRAT 0.0694

DDRGER 0.0734 DDRGER 0.0653
DDYAT 0.1619 DDYAT 0.0863

DDYGER 0.0636 DDYGER 0.0301

Table 12: Kwiatkowski-Phillips-Schmidt-Shin Test
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Augmented Dickey-Fuller Test
const const+trend

UAT 0.1923 UAT 0.8290
UGER 0.2549 UGER 0.0178 **

PD 0.0555 * PD 0.8884
PAT 0.0002 *** PAT 0.0257 **

POIL 0.1215 POIL 0.2541
PGER 0.0310 ** PGER 0.2514

RAT 0.1923 RAT 0.2264
RGER 0.0237 ** RGER 0.0271 **

YAT 0.0589 * YAT 0.0178 **
YGER 0.4154 YGER 0.2866

DUAT 0.0000 *** DUAT 0.0000 ***
DUGER 0.0037 *** DUGER 0.0112 **

DPD 0.0000 *** DPD 0.0000 ***
DPAT 0.4650 DPAT 0.1169
DPOI 0.0000 *** DPOIL 0.0000 ***

DPGER 0.1162 DPGER 0.0455 **
DRAT 0.0000 *** DRAT 0.0000 ***

DRGER 0.0000 *** DRGER 0.0000 ***
DYAT 0.0000 *** DYAT 0.0000 ***

DYGER 0.0000 *** DYGER 0.0000 ***

DDUAT 0.0000 *** DDUAT 0.0000 ***
DDUGER 0.0000 *** DDUGER 0.0000 ***

DDPD 0.0000 *** DDPD 0.0000 ***
DDPAT 0.0000 *** DDPAT 0.0000 ***

DDPOIL 0.0000 *** DDPOIL 0.0000 ***
DDPGER 0.0000 *** DDPGER 0.0000 ***

DDRAT 0.0000 *** DDRAT 0.0000 ***
DDRGER 0.0000 *** DDRGER 0.0000 ***

DDYAT 0.0000 *** DDYAT 0.0000 ***
DDYGER 0.0000 *** DDYGER 0.0000 ***

Table 13: Augmented Dickey-Fuller Test
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Phillips-Perron Test
const const+trend

UAT 0.1506 UAT 0.8545
UGER 0.0487 ** UGER 0.6716

PD 0.0571 * PD 0.8727
PAT 0.0000 *** PAT 0.5547

POIL 0.1722 POIL 0.3884
PGER 0.0002 *** PGER 0.6529

RAT 0.1506 RAT 0.1748
RGER 0.0780 * RGER 0.1055

YAT 0.0589 * YAT 0.0178 **
YGER 0.4215 YGER 0.2226

DUAT 0.0000 *** DUAT 0.0000 ***
DUGER 0.0000 *** DUGER 0.0000 ***

DPD 0.0000 *** DPD 0.0000 ***
DPAT 0.0658 * DPAT 0.0011 ***

DPOIL 0.0000 *** DPOIL 0.0000 ***
DPGER 0.0000 *** DPGER 0.0000 ***

DRAT 0.0000 *** DRAT 0.0000 ***
DRGER 0.0000 *** DRGER 0.0000 ***

DYAT 0.0000 *** DYAT 0.0000 ***
DYGER 0.0000 *** DYGER 0.0000 ***

DDUAT 0.0000 *** DDUAT 0.0000 ***
DDUGER 0.0000 *** DDUGER 0.0000 ***

DDPD 0.0000 *** DDPD 0.0001 ***
DDPAT 0.0000 *** DDPAT 0.0000 ***

DDPOIL 0.0000 *** DDPOIL 0.0001 ***
DDPGER 0.0000 *** DDPGER 0.0000 ***

DDRAT 0.0000 *** DDRAT 0.0000 ***
DDRGER 0.0000 *** DDRGER 0.0001 ***

DDYAT 0.0000 *** DDYAT 0.0001 ***
DDYGER 0.0000 *** DDYGER 0.0000 ***

Table 14: Phillips-Perron Test
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D Estimation Output

Appendix D includes the coefficient estimates and t-values of the VEC(3)-

model finally used. This specification exhibits two cointegrating relations, the

first one is restricted to represent the FIP and the second one to represent

the LMC. Parameters which are significant at the five percent level are in

bold. Note that due to the presence of heteroscedasticity, standard errors

are biased and so the t-values have to be interpreted cautiously.
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 CE1 CE2       

         

DPAT(-1) -1 0       

PD(-1) 0 0       

RAT(-1) 1 0       

RGER(-1) 0 0       

UAT(-1) 0 1       

UGER(-1) 0 -1       

YAT(-1) 0 0       

YGER(-1) 0 0       

C -0.020 -0.027       

         

EC D(DPAT) D(PD) D(RAT) D(RGER) D(UAT) D(UGER) D(YAT) D(YGER) 

         

CE1 -0.056 -0.077 -0.020 -0.032 0.577 0.369 -0.254 -0.059 

 -1.240 -3.304 -0.617 -0.816 3.341 2.275 -2.507 -1.049 

CE2 0.003 -0.001 -0.005 0.003 -0.010 0.011 0.017 0.008 

 1.032 -0.506 -2.292 1.220 -0.857 1.071 2.570 2.182 

D(DPAT(-1)) -0.423 -0.003 0.156 0.137 -0.449 -0.347 0.004 0.033 

 -4.153 -0.065 2.134 1.531 -1.152 -0.949 0.018 0.261 

D(DPAT(-2)) -0.069 0.017 0.184 0.060 -0.723 -0.167 -0.227 0.064 

 -0.655 0.303 2.426 0.652 -1.790 -0.440 -0.960 0.484 

D(DPAT(-3)) 0.397 0.073 0.189 0.038 -1.039 0.078 -0.217 -0.019 

 5.422 1.926 3.600 0.597 -3.712 0.298 -1.321 -0.211 

D(PD(-1)) -0.815 0.051 0.004 -0.358 2.073 2.153 -0.658 -0.129 

 -3.927 0.478 0.029 -1.971 2.612 2.889 -1.414 -0.497 

D(PD(-2)) -0.206 0.050 0.050 0.191 1.370 0.738 0.154 0.064 

 -0.902 0.422 0.305 0.958 1.572 0.902 0.301 0.224 

D(PD(-3)) -0.196 0.021 0.000 -0.041 -0.066 -0.216 0.035 0.283 

 -0.870 0.182 0.001 -0.207 -0.076 -0.267 0.069 1.011 

D(RAT(-1)) -0.011 0.001 -0.072 0.078 0.196 -0.520 -0.263 0.015 

 -0.090 0.021 -0.805 0.713 0.412 -1.163 -0.943 0.094 

D(RAT(-2)) -0.100 0.027 -0.024 0.103 -0.426 -0.605 -0.262 0.029 

 -0.830 0.436 -0.275 0.969 -0.923 -1.396 -0.968 0.193 

D(RAT(-3)) 0.033 0.134 0.152 0.116 0.075 -0.207 -0.095 0.004 

 0.295 2.301 1.893 1.187 0.176 -0.515 -0.377 0.030 

D(RGER(-1)) 0.018 -0.042 0.152 0.216 -0.362 0.873 -0.179 0.159 

 0.169 -0.769 1.997 2.324 -0.892 2.291 -0.751 1.199 

D(RGER(-2)) -0.032 0.000 -0.001 -0.107 1.090 1.320 0.278 -0.122 

 -0.282 -0.006 -0.017 -1.071 2.503 3.229 1.090 -0.856 

D(RGER(-3)) -0.069 -0.038 -0.123 -0.136 1.926 1.316 -0.055 -0.057 

 -0.562 -0.601 -1.394 -1.260 4.099 2.984 -0.201 -0.369 

D(UAT(-1)) 0.051 0.011 0.015 0.016 0.113 -0.014 -0.014 -0.012 

 2.079 0.830 0.869 0.759 1.208 -0.164 -0.252 -0.399 

D(UAT(-2)) -0.044 -0.001 -0.012 0.015 0.068 -0.108 0.116 0.021 

 -1.831 -0.101 -0.677 0.732 0.740 -1.254 2.139 0.686 

D(UAT(-3)) 0.028 0.027 -0.045 -0.027 -0.084 -0.060 -0.017 0.061 

 1.184 2.268 -2.722 -1.325 -0.943 -0.724 -0.332 2.098 

D(UGER(-1)) -0.012 0.005 0.012 -0.038 0.012 0.412 -0.024 -0.003 

 -0.524 0.399 0.759 -1.963 0.141 5.194 -0.493 -0.114 

D(UGER(-2)) 0.013 0.006 -0.006 -0.012 0.157 0.417 -0.017 -0.037 

 0.585 0.510 -0.386 -0.616 1.848 5.250 -0.351 -1.345 

D(UGER(-3)) -0.025 -0.022 -0.006 0.000 0.292 0.128 -0.063 -0.033 

 -1.107 -1.897 -0.338 0.020 3.362 1.566 -1.241 -1.170 

D(YAT(-1)) 0.076 0.029 0.187 0.018 -0.190 -0.122 -0.748 0.111 

 1.574 1.138 5.357 0.433 -1.027 -0.703 -6.881 1.831 

D(YAT(-2)) 0.045 0.029 0.117 0.026 -0.311 0.107 -0.181 0.115 

 0.728 0.909 2.670 0.492 -1.330 0.487 -1.319 1.501 

D(YAT(-3)) 0.002 0.032 0.044 0.048 -0.212 0.214 0.121 0.039 

 0.035 1.300 1.272 1.144 -1.157 1.247 1.124 0.649 

D(YGER(-1)) 0.012 -0.026 0.020 0.133 -0.317 -0.752 0.000 -0.229 

 0.145 -0.612 0.329 1.834 -1.005 -2.535 0.001 -2.221 

D(YGER(-2)) 0.074 0.008 0.025 0.084 -0.919 -1.067 0.040 -0.137 

 0.908 0.199 0.431 1.171 -2.933 -3.630 0.220 -1.338 

D(YGER(-3)) 0.073 0.026 0.045 0.007 -0.071 0.149 0.136 0.024 

 0.934 0.632 0.811 0.108 -0.240 0.533 0.781 0.252 

C -0.001 0.000 -0.002 0.000 0.009 0.005 0.011 0.006 

 -0.635 0.495 -2.141 -0.368 1.832 1.157 4.025 3.795 

DPOIL 0.022 -0.001 0.002 -0.002 -0.034 0.052 0.005 -0.006 

 4.395 -0.460 0.670 -0.433 -1.744 2.840 0.471 -0.971 

 

Figure 26: Estimation Output
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E Properties of the Residuals

E.1 Residual Plots

In figure 27 the residuals of the eight endogenous variables included are

plotted together with bounds at plus/minus two standard deviations. One

can expect that on average five percent of the residuals lie outside these

bands.
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Figure 27: Residuals of the Eight Equations
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E.2 CUSUM Test on Parameter Stability

In this section the results of the CUSUM test on stability of the estimated

parameters are displayed. In figure 28 the top diagram on the left refers

to the equation for D(DPAT), the next one to the right to the equation for

D(PD), the left diagram in the second row refers to equation D(DPAT), the

right diagram to the equation for D(RGER), the left diagram in the third

row refers to the equation for D(UAT), the right diagram to the equation

for D(UGER), the left diagram in the last row refers to the equation for

D(YAT) and the left diagram to the equation for D(YGER). As can be seen,

the test statistic never reaches values in the area of significance, although

with respect to German interest rates in the early 1980s it comes very close.
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Figure 28: CUSUM Test
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F Assessing the Weights for Forecast Combi-

nation

Table 15 displays the results of an OLS-estimation of equation 45. Note that

the coefficients do not have to sum up to unity.

DDPAT COEFFICIENT P-VALUE

C 0.0018 0.1701
ARMA 0.8918 0.0038
VEC 0.4958 0.1072

DRAT COEFFICIENT P-VALUE

C -0.0004 0.3885
ARMA 0.4247 0.0868
VEC 0.2937 0.1482
HW 0.1086 0.4481
SES -0.0571 0.8700

DUAT COEFFICIENT P-VALUE

C 0.0016 0.5111
HW 0.7300 0.0000

DYAT COEFFICIENT P-VALUE

C 0.0006 0.9268
ARMA 0.0628 0.8977
VEC 0.2880 0.4910
HW -0.1569 0.6257
SES -0.3690 0.5317

Table 15: Weights of the Combined Forecast
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Zusammenfassung

In dieser Arbeit werden mittels eines Strukturellen Multivariaten

Fehlerkorrekturmodells die Beziehungen zwischen den zwei stark inte-

grierten asymmetrischen Volkswirtschaften Österreich und Deutsch-

land untersucht. Im ersten Teil werden, auf Basis des dynamisch

optimalen Verhaltens von Haushalten in beiden Wirtschaftsräumen,

der steady state Eigenschaften von Neoklassischen Wachstumsmod-

ellen und einer Gravitätsgleichung für Arbeitsmigration, langfristige

Gleichgewichtsbeziehungen hergeleitet. Diese Relationen zwischen en-

dogenen Variablen dienen als Restriktionen des Kointegrationsraumes.

Im Gegensatz zu dieser theoretisch motivierten Herangehensweise,

sind die kurzfristigen Anpassungen unrestringiert und werden rein

statistisch über den vektorautoregressiven Teil des Modells geschätzt.

Nach dem Modellselektionsprozess und einer Reihe an Spezifikation-

stests wird das resultierende Strukturelle Multivariate Fehlerkorrek-

turmodell dazu verwendet, die Auswirkungen von Schocks, welche

die große Volkswirtschaft treffen, auf die kleine Volkswirtschaft und

die damit verbundenen Transmissionskanäle zu untersuchen. Dies

geschieht mittels einer verallgemeinerten Impulsantwortanalyse. Im

zweiten Teil der Arbeit werden verschiedene Kriterien, die die Prog-

nosegüte von ökonometrischen Modellen beschreiben, herangezogen,

um die Vorhersagequalität des Strukturellen Multivariaten Fehlerkor-

rekturmodells in Bezug auf die Veränderungen der Inflationsrate, die

Veränderungen des Zinssatzes, die Veränderungen der Arbeitslosigkeit

und die Wachstumsraten des Bruttoinlandsprodukts in der kleinen

Volkswirtschaft zu bewerten. Schließlich wird eine kombinierte Prog-

nose aus den Vorhersagen des Strukturellen Multivariaten Fehlerko-

rrekturmodells, geeigneten ARMA Modellen, Holt-Winters Proze-

duren und einfachen exponentiellen Glättungen konstruiert. Diese

kombinierte Prognose hat eine bessere Vorhersagequalität als die in-

dividuellen Prognosen und könnte in zukünftigen Arbeiten um die

Vorhersagen von großen makroökonometrischen Modellen, dynamisch

stochastischen allgemeinen Gleichgewichtsmodellen oder den Vorher-

sagen von Experten erweitert werden.
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Abstract

The framework of a Structural Vector Error Correction Model

(SVECM) is used to study interrelations between the two closely re-

lated asymmetric economic areas Austria and Germany. In the first

part of this thesis, theoretical long-run relations are derived via the

dynamic optimizing behavior of households in both open economies,

via the steady state properties of neoclassical growth models, and via

a gravity equation characterizing labor migration. These relations de-

fine plausible equilibrium relationships between endogenous variables

which can be implemented as restrictions on the elements of the cointe-

grating vectors. In contrast to this theoretically motivated approach,

short-run adjustments are estimated without theoretical guidance ac-

cording to the vector autoregressive part of the model. After the model

selection process and a number of specification tests, the resulting

SVECM is used to study shocks and their transmission channels from

the large to the small economy with the help of generalized impulse re-

sponse functions. In the second part of this thesis, different criteria for

evaluating predictive accuracy are used to assess whether the model

obtained is useful in forecasting changes in inflation, changes in the

interest rate, changes in unemployment as well as output growth levels

in the small economy. Finally, forecast combinations are performed

between the SVECM, appropriately chosen ARMA models, the Holt-

Winters algorithm and Single Exponential Smoothing methods. These

combined forecasts are able to outperform all individual forecasts and

could be extended to include the results of large-scale models, Dy-

namic Stochastic General Equilibrium models and the judgment of

experts in future work.

JEL-Classification: C32, C53, F41

Keywords: Structural Vector Error Correction Model; Open Economies;

Economic Integration; Generalized Impulse Response Analysis; Forecasting
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